Adaptive Performance Control with Embedded Timing Error Predictive Sensors for Subthreshold Circuits

> <u>Hiroshi Fuketa</u>^{*†}, Masanori Hashimoto^{*†}, Yukio Mitsuyama^{*†}, and Takao Onoye^{*†}

> > *Dept. Information Systems Engineering, Osaka University

[†]JST, CREST

Summary

- Demonstrate an self-adaptive technique for compensating manufacturing and environmental variability using embedded timing error predictive sensor, called "canary flip-flop"
 - Test chips were fabricated in 65-nm CMOS process
 - Measurement results show:
 - The power dissipation can be reduced by 46% compared to conventional worst-case design with guardbanding

Background

- Subthreshold Circuits
 - Operate at lower supply voltage than threshold voltage V_{th}
 - Slow Speed yet Ultra-Low Power
 - Suitable to energy-constrained devices with low demands for their speeds such as a processor for sensor network

Problem of subthreshold circuits

- Extremely sensitive to manufacturing and environmental (PVT) variability
 - Conventional worst-case design is inefficient
 - → Run-time adaptive speed control is promising

* Simulation of 17-stage ring oscillator (90nm process)

Proposed Technique

- Adaptive speed control with "canary flip-flop"
 - Predict the occurrence of timing errors
 - Can be applied to general sequential logics

Circuit structure of test chip

32b Kogge-Stone adder(KSA) is controlled adaptively

Measurement Result

Power Dissipation at the various temperature

Adaptive speed control with canary FF

v.s. Fixed performance compensation

Adaptive speed control is much more energy-efficient