## Geyser-1: <br> A MIPS R3000 CPU Core with FineGrained Run-Time Power Gating

D.Ikebuchi,N.Seki,Y.Kojima,M.Kamata,L.Zhao,H.Amano: Keio University T.Shirai,S.Koyama,T.Hashida, Y.Umahashi,H.Masuda,K.Usami
:Shibaura Institute of Technology
S.Takeda,H.Nakamura: The University of Tokyo
M.Namiki:Tokyo University of Agriculture and Technology
M.Kondo:The University of Electro-Communications

Japan

## Power Gating Architecture

- Power Switch (Sleep

Tr.) is inserted between logic and Ground (or logic and VDD, or both)

- Sleep Tr is high threshold (= low leakage) MTCMOS
- Sleep Mode: Sleep Tr. cuts off the power
- Active Mode: Sleep Tr. is power-on and the
 power is supplied to logic


## Run Time Power Gating on Geyser-1

- Geyser is 5-stage standard MIPS R3000 Pipeline
- ALU is split into four units (CLU, Multiplier, Divider, Shifter)
- Each unit is controlled by sleep signal
- The pre-decoder in IF stage creates the wake-up signal
- After the operation, the unit sleeps soon automatically.



## Fine-grain PG [Usami06]



## Geyser-1 Layout



## Simple Conclusion

- Geyser-1 works at 60 MHz clock with runtime PG.
- It saves leakage power by $5 \%$ to $24 \%$.
- The power in application can be saved by $3 \%$ to $28 \%$.
- The area overhead is smaller about $10 \%$.
- Now Geyser-2 with cache/TLB is implemented.
Please come to the poster

