

MANCHESTER

A Low Latency Wormhole Router for Asynchronous On-chip Networks

Wei Song and Doug Edwards

Advanced Processor Technologies Group (APT) School of Computer Science University of Manchester, UK

Advanced Processor Technologies Group The School of Computer Science

Outline

- Asynchronous On-chip Networks
 - Globally Asynchronous and Locally Synchronous (GALS)
 - Quasi Delay Insensitive (QDI) pipeline
 - Target: general methods to improve speed
- Solution

MANCHESTEF

The Universit of Manchesté

- Channel Slicing
- Using **Lookahead** pipeline on critical cycles
- Outcome
 - 32-bit wormhole router
 - **41.4%** latency reduction with **28.3%** area overhead

Advanced Processor Technologies Group The School of Computer Science

MANCHESTER 1824

Asynchronous Data Flow

- One-hot coding
 - 01 0
 - 10 1
 - 00 idle, bubble

- Bubble propagation
- Critical cycle

Asynchronous On-chip Network

MANCHESTER

The Universi of Manchest

• NoC

- Network-on-Chip
- A scalable and distributed communication fabric
- GALS
 - Synchronous IP Blocks
 - Fully asynchronous routers

Data-path Abstraction

Advanced Processor Technologies Group The School of Computer Science

MANCHESTER 1824

The University of Manchester

Synchronized Pipeline Style

MANCHESTER

MANCHESTER 1824

The University of Manchester

Using Independent Sub-channels

Advanced Processor Technologies Group The School of Computer Science

Problem in Flow Control

Advanced Processor Technologies Group The School of Computer Science

Solution: Re-synchronization

A sub-channel controller for each sub-channel

- Re-synchronize once per frame
 - Algorithm:
 - 1. Wait for head flit
 - 2. Routing
 - 3. Data transmission (**parallel**)
 - 4. Tail detected
 - 5. Go to 1

Advanced Processor Technologies Group The School of Computer Science

Critical Cycle Analysis

• Long interconnect

MANCHESTER

ne Universi Manchesto

- Buffer insertion
- More pipeline stages
- Wave-pipeline

Advanced Processor Technologies Group The School of Computer Science

- Crossbar
 - High fan-out
 - Routing control
 - Inside the router
 - Critical cycle

Lookahead Pipeline

Normal QDI pipeline

MANCHESTER

The Universit of Mancheste

Lookahead pipeline [Montek Singh, 2007]

1. Early acknowledge; 2. don't need an explicit bubble; 3. not strict QDI.

Advanced Processor Technologies Group The School of Computer Science

Using Lookahead in Router

- Only utilized on the critical cycle.
- No significant area overhead.
- Timing assumptions are ensured.

A Wormhole Router Design

MANCHESTER

The University of Mancheste

- 5-port router for the mesh topology
- 32-bit data-width
 - 16 1-of-4 subchannels
- 2-stage input buffer
 - Control on the ack of the 2nd stage
- 2-stage output buffer
 - Make lookahead inside

Advanced Processor Technologies Group The School of Computer Science

Data-path of a Sub-channel

Advanced Processor Technologies Group The School of Computer Science

MANCHESTER

The Universit of Manchesté

Latency Reduction Shown in STG

MANCHESTER 1824

The University of Mancheste

Implementation and Simulation

- Verilog HDL netlists
 - Controller are generated from STGs using Petrify
 - Data-path are manually designed
- Implementation
 - Faraday Standard Cell Library using UMC 130nm technology
 - Synopsys DC + ICC + StarRC
- Simulation

MANCHESTEF

- Post-layout simulation with back-annotated latency from RC extraction
- Typical corner (25 °C, 1.2V)

The University of Manchester

Speed Performance

	CS + LH	ChSlice	Traditional
Cycle period	1.7 ns	2.2 ns	2.9 ns
Router latency	1.7 ns	2.1 ns	2.8 ns
Arbitration	0.8 ns	0.8 ns	0.8 ns

- Channel Slicing and Lookahead (CS+LH)
 - **590 MHz**, 41.4% cycle period reduction
- Channel Slicing only (ChSlice)
 - **450 MHz**, 24.1% cycle period reduction
- Traditional (without ChSlice or LH)
 - 345 MHz

The University of Manchester

Area Consumption

	CS + LH	ChSlice	Traditional
Input Buffer	6.2K	5.8K	4.3K
Output Buffer	4.5K	4.5K	4.4K
Crossbar	3.3K	3.2K	2.4K
Arbitration	14.5K	13.9K	11.3K

- Area in units of NAND2X1 Gate
- Channel Slicing 23.0% overhead
- Lookahead 5.3% overhead
- Total 28.3% overhead

The Universit of Manchesté

Data Width Effect

Cycle period increases when sub-channels are synchronized.

Cycle period is fixed when Channel Slicing is in use.

Advanced Processor Technologies Group The School of Computer Science

Compare with Other Routers

	Period	Tech	Special cell Library	Pipeline style
MANGO [2005]	1.26 ns	0.12 um	Unknown	Bundled-data
ANoC [2005]	4 ns	0.13 um	Yes	QDI
ASPIN [2008]	0.88 ns	90 nm	Custom	Bundled-data
QNoC [2009]	4.8 ns	0.18 um	Std cell	Bundled-date
CS+LH [2010]	1.7 ns	0.13 um	Std cell	Lookahead

• Full standard cell design

MANCHESTER

The University of Manchestel

• Delay insensitive, tolerance to process variation

Conclusion

- QDI pipelines: low power and tolerant to process variation
- Channel Slicing: no C-element tree
- *Lookahead*: fast critical cycle.
- The wormhole router
 - 1.7 ns, 590MHz
 - 41.4% latency reduction with 28.3% area overhead

MANCHESTER

Thanks! Questions?

Contact info. Wei Song songw@cs.man.ac.uk

Advanced Processor Technologies Group The School of Computer Science