Clock Tree Embedding for 3D ICs

15th Asia and South Pacific Design Automation Conference Taipei, Taiwan January 18-21, 2010

Tak-Yung Kim and Taewhan Kim

System Synthesis Laboratory School of Electrical Engineering and Computer Science Seoul National University

Contents

- 3-Dimensional Integrated Circuit
- Clock Tree Synthesis
- Clock Tree Embedding for 3D ICs
 - Zero Skew Clock Tree Embedding
 - Minimization of the number of through-silicon vias
 - Minimization of the total wirelength
- Clock Tree Synthesis Flow for 3D ICs
- Experimental Results
- Conclusions

3-Dimensional Integrated Circuit

Chip with multiple layers of active devices

- by vertically stacking into a single chip or package.
- Currently, a true 3D IC design technology using TSVs has been actively researched.
- Advantages & Issues

Advantages	Issues
 Short global interconnection wire Performance/Power/Area benefit 	 Manufacturing cost Yield Thermal problem
 Small form factor System size reduction Heterogeneous technology integration 	 Thermal problem Noise problem Physical design automation

3D Physical Design Automation

- Various algorithms have been researched in the area of floorplanning, placement, and routing.
- Clock tree synthesis for 3D ICs
 - Minz, Zhao, and Lim developed a thermal-aware buffered clock tree synthesis solution. (BURITO; ASPDAC2008)
 - Minimizes and balances the temperature dependent skew.
 - Limited to two layered face-to-face wafer bonded 3D ICs.
 - Does not effectively consider the clock tree embedding problem in a vertical design space.

Clock Tree Synthesis

CTS algorithm should consider 3-dimensional design space !!!

- Vertical die layers
- Through-silicon vias

1. Topology Generation 2. Embedding (Routing)

Zero Skew Clock Tree Embedding

 $|e_x|$: edge length from the parent node

Proposed Algorithm

ZCTE-3D (Zero Skew Clock Tree Embedding in 3D ICs)

Solves the problem for a given topology in two steps.

Subproblem 1

TSV allocation problem

➔ Minimize the number of TSVs

Subproblem 2

3D clock tree embedding problem with **TSV placement**

→ Minimize the total wirelength

Motivation for the TSV Allocation

Clock root s₀

Number of TSV (x, s) = | layer(x) - layer(s) |

Sink Placement Layer			Embedding Layer			TSVs			
S ₁	S ₂	S 3	S ₄	X 1	X ₂	S ₀			
1	2		2	1	1	1	2		
						2	4		
				1	2	1	3		
						2	3		
				2	1	1	3		
						2	3		
				2	2	1	4		
						2	2		

Number of TSVs & Embedding Layers

- The number of TSVs is computed by
 - TSVs allocated in the sub-trees rooted at children
 - TSVs needed for routing to children.

The number of TSVs is decided by the embedding layers of tree nodes.

Embedding Layer Candidates

- Find embedding layer candidates $el(x) = \langle l_1, l_2 \rangle$.
- Node x can be assigned to a layer between I_1 and I_2 .

Exact Embedding Layer Assignment

Optimality of Embedding Layer Assignment

1st Bottom-up Phase

Embedding layer candidates construction

Lemma 1: Optimality of embedding layer candidates el(.)

Embedding layer candidates $el(\cdot)$ contain an assignment of embedding layers of optimal TSV allocation.

2nd Top-down Phase

The exact embedding layer assignment

Lemma 2: Optimality of nearest embedding layer assignment

The nearest embedding layer assignment in $el(\cdot)$ leads to an optimal TSV allocation.

Minimization of the Total Wirelength

- Find the precise (x,y)-location with TSV placement.
- Extended the 2D clock tree embedding algorithm
 - DME (Deferred Merge Embedding) (Chao et al., TCAS1992)
 - Wirelength optimal under the linear delay model
 - Suboptimal under the Elmore delay model
 - For a prescribed clock connection topology
 - 1st bottom-up phase: Constructs a tree of merging segments, which represent loci of possible placements of tree nodes.
 - 2nd top-down phase: Decide the exact embedding locations of tree nodes.

DME on 3D Design Space

 Construction of merging segment ms(v), with TRR (Tilted Rectangular Region)

- Edge length |e_x| calculation is modified to consider the delays of TSVs as well as 2D wires.
- The (x,y)-location of TSVs is also concurrently decided based on the parasitic values of TSV and interconnect wire.

Zero Skew Clock Routing Model

Merging under the Linear Delay Model

Linear lumped capacitance delay model

a

- $t(a,b) = c_w \cdot d(a,b)$
- Propagation delay

$$t(v, T_a) =$$

$$t_a + c_w x + (l_v - l_a)c_v$$

$$t(v, T_b) =$$

$$t_b + c_w (L - x) + (l_b - l_v)c_v$$

Independent on the TSV locations.

b

Merging under the Linear Delay Model cont' Edge length calculation \Box $|e_a|=x$ and $|e_b|=L-x$ ($0 \le x \le L$) $x = \frac{(t_b - t_a) + c_w L + (l_a + l_b - 2l_v)c_v}{2c_w}$ b TSV TSI ˈms(v) ms(v) a $(I_a = I_b = I_v)$ $(I_a = 1, I_b = 2, I_v = 1)$ $(I_a = 1, I_b = 2, I_v = 2)$

Merging under the Elmore Delay Model

$$Merging under the Elmore Delay Model-cont'$$
• Edge length calculation

$$|e_a|=x \text{ and } |e_b|=L-x (0 \le x \le L)$$
TSVs are on the
merging location.

$$x = \begin{cases} \frac{(t_b - t_a) + r_w L(C_b + \frac{1}{2}c_w L) + \beta + r_v c_w (l_b - l_v) L}{r_w (C_a + C_b + c_w L) + r_v c_w (l_b - l_a)}, & (r_w c_v - r_v c_w) \ge 0, x_{v1} = x_{v2} = x \\ \frac{(t_b - t_a) + r_w L(C_b + \frac{1}{2}c_w L) + \beta + r_w c_v (l_b - l_v) L}{r_w (C_a + C_b + c_w L) + r_w c_v (l_b - l_a)}, & (r_w c_v - r_v c_w) \ge 0, x_{v1} = 0, x_{v2} = L \\ \frac{\beta = r_v ((l_b - l_v) C_b - (l_v - l_a) C_a + \frac{1}{2}c_v ((l_b - l_v)^2 - (l_v - l_a)^2))} \\ \text{TSVs are on the location of children} \end{cases}$$

Proposed 3D Clock Tree Synthesis Flow

Tree Topology Generation for 3D ICs (MMM-3D)

- Extended MMM (Method of Means and Medians) (Jackson et al., DAC1990): Recursively divides sinks based on the (x,y)-coordinates.
- If HPWL(subset) $\leq \rho \cdot L$ (0 $\leq \rho \leq 1$, L = HPWL(all sinks)),
 - Partitions the sinks according to the placement layers.
 - Controls the density of TSVs

Experimental Results

- 2-Layered 3D ICs under Elmore delay model
- Total number of TSVs: 10% \downarrow
- **Total wirelength:** $4\% \downarrow$
- Max clock network delay: 2% \downarrow

benchmark	ALL_BURITO (100%)			BURITO + ZCTE-3D			MMM-3D + ZCTE-3D		
	TSVs	WL (um)	Delay (ns)	TSVs	WL (um)	Delay (ns)	TSVs	WL (um)	Delay (ns)
r1	88	1496266	1.68	82	1496538	1.67	83	1441849	1.64
r2	225	2994996	4.34	197	2996950	4.29	197	2831346	4.34
r3	309	3869936	6.75	283	3872996	6.71	276	3725294	6.37
r4	725	7784107	19.82	658	7789465	19.68	653	7424886	19.28
r5	1161	11385430	35.75	1033	11393346	35.54	1052	10940984	35.2
ratio	1	1	1	0.9	1	0.99	0.9	0.96	0.98

Experimental Results – cont'

Clock topology Generation

- Benchmark circuit: r3
- Number of die layers: 4

TSVs = 657TSVs = 359TSVs = 3Wirelength = 187cmWirelength = 224cmWirelength = 350cm

Conclusions

- The zero skew clock tree embedding algorithm ZCTE-3D is proposed.
 - Allocates optimal number of TSVs. (Assign-Embedding-Layer)
 - Minimizes the total wirelength by extending 2D DME algorithm to 3D design space. (DME-3D)
 - Wirelength optimal under the linear delay model.
 - Suboptimal under the Elmore delay model.
- **3D topology generation algorithm MMM-3D is proposed.**

