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3-Dimensional Integrated Circuit
 Chip with multiple layers of active devices

 by vertically stacking into a single chip or package.
 Currently, a true 3D IC design technology using 

TSVs has been actively researched.
 Advantages & Issues
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Advantages Issues
 Short global interconnection wire

 Performance/Power/Area benefit
 Small form factor

 System size reduction
 Heterogeneous technology integration

 Manufacturing cost
 Yield
 Thermal problem
 Noise problem
 Physical design automation



3D Physical Design Automation
 Various algorithms have been researched in 

the area of floorplanning, placement, and 
routing.

 Clock tree synthesis for 3D ICs
 Minz, Zhao, and Lim developed a thermal-aware 

buffered clock tree synthesis solution.
(BURITO; ASPDAC2008)
 Minimizes and balances the temperature dependent skew.
 Limited to two layered face-to-face wafer bonded 3D ICs.
 Does not effectively consider the clock tree embedding 

problem in a vertical design space.
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Clock Tree Synthesis
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Minimizing the weighted sum
of TSVs and wirelength.
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Zero Skew Clock Tree Embedding
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• A set S of sink locations
• A tree topology G(S)

Construct a zero skew 
clock tree embedding T(S)

w1, w2: weighting factors
nv(Tx): the number of TSVs in the clock tree Tx
|ex|: edge length from the parent node



Proposed Algorithm
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ZCTE-3D
(Zero Skew Clock Tree Embedding in 3D ICs)

Solves the problem for a given topology in two steps.

Subproblem 1

TSV allocation problem

 Minimize the number of TSVs

Subproblem 2

3D clock tree embedding 
problem with TSV placement

 Minimize the total wirelength



Motivation for the TSV Allocation

 Optimal embedding layer assignments
 <x1,x2,s0> = <1,1,1> and <2,2,2>
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Number of TSVs & Embedding Layers
 The number of TSVs is computed by

 TSVs allocated in the sub-trees rooted at children
 TSVs needed for routing to children.
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The number of TSVs is decided
by the embedding layers of tree nodes.



Embedding Layer Assignment
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1st Bottom-up Phase
Construct
embedding layer candidates.

2nd Top-down Phase
Assign
the exact embedding layer.



Embedding Layer Candidates

 Find embedding layer candidates 
el(x) = <l1,l2>.

 Node x can be assigned to a layer 
between l1 and l2.
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Exact Embedding Layer Assignment
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Optimality of Embedding Layer Assignment
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Lemma 1: Optimality of embedding layer candidates el(⋅)

Embedding layer candidates el(⋅) contain an assignment of 
embedding layers of optimal TSV allocation.

Lemma 2: Optimality of nearest embedding layer assignment

The nearest embedding layer assignment in el(⋅) leads to an 
optimal TSV allocation.

1st Bottom-up Phase
Embedding layer candidates construction

2nd Top-down Phase
The exact embedding layer assignment



Minimization of the Total Wirelength
 Find the precise (x,y)-location with TSV placement.

 Extended the 2D clock tree embedding algorithm
 DME (Deferred Merge Embedding) (Chao et al., TCAS1992)
 Wirelength optimal under the linear delay model
 Suboptimal under the Elmore delay model

 For a prescribed clock connection topology
 1st bottom-up phase: Constructs a tree of merging segments, 

which represent loci of possible placements of tree nodes.
 2nd top-down phase: Decide the exact embedding locations of 

tree nodes.
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DME on 3D Design Space
 Construction of merging segment ms(v),  

with TRR (Tilted Rectangular Region)

 Edge length |ex| calculation is modified to consider 
the delays of TSVs as well as 2D wires.

 The (x,y)-location of TSVs is also concurrently 
decided based on the parasitic values of TSV and 
interconnect wire.
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Zero Skew Clock Routing Model
 Find zero skew merging point x

with t(v,Ta) = t(v,Tb).
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Merging under the Linear Delay Model
 Linear lumped capacitance delay model

 Propagation delay
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Merging under the Linear Delay Model
 Edge length calculation

 |ea|=x and |eb|=L–x (0≤x≤L)
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Merging under the Elmore Delay Model
 Propagation delay

18

1

2

2

))(( 

))(
2
1)((

))((
2
1

),(

vavwvvw

avvavav

avvawwwa

a

xllcrcr

llcllCr

xllcCrxcrt

Tvt

−−−

−+−+

−+++

=

))()((
)(

))(
2
1)((

))((
2
1)

2
1(

),(

2

2

2

vvbwvvw

vbvw

vbvvbbv

wvbvbw

wwwbwb

b

xLllcrcr
Lllcr

llcllCr

xLcllcCr

xcrLcCLrt

Tvt

−−−−
−+

−+−+

+−+−

+++

=

Dependent on the TSV locations.

v

a b



Merging under the Elmore Delay Model
 Edge length calculation

 |ea|=x and |eb|=L–x (0≤x≤L)
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ZCTE-3D

Zero Skew
Clock Tree
Embedding
in 3D ICs

Proposed 3D Clock Tree Synthesis Flow
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Tree Topology Generation
( MMM-3D )

Embedding Layer Assignment
for Optimal TSV Allocation

( Assign-Embedding-Layer )

Clock Tree Embedding
with TSV Placement

( DME-3D )

Synthesized Clock Tree 
for 3D ICs



Tree Topology Generation for 3D ICs (MMM-3D)
 Extended MMM (Method of Means and Medians) (Jackson et al., 

DAC1990): Recursively divides sinks based on the (x,y)-coordinates.
 If HPWL(subset) ≤ ρ⋅L (0≤ρ≤1, L = HPWL(all sinks)),

 Partitions the sinks according to the placement layers.
 Controls the density of TSVs
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Experimental Results
 2-Layered 3D ICs under Elmore delay model
 Total number of TSVs: 10% ↓
 Total wirelength: 4% ↓
 Max clock network delay: 2% ↓

22

benchmark
ALL_BURITO (100%) BURITO + ZCTE-3D MMM-3D + ZCTE-3D

TSVs WL
(um)

Delay
(ns) TSVs WL

(um)
Delay
(ns) TSVs WL

(um)
Delay
(ns)

r1 88 1496266 1.68 82 1496538 1.67 83 1441849 1.64
r2 225 2994996 4.34 197 2996950 4.29 197 2831346 4.34
r3 309 3869936 6.75 283 3872996 6.71 276 3725294 6.37
r4 725 7784107 19.82 658 7789465 19.68 653 7424886 19.28
r5 1161 11385430 35.75 1033 11393346 35.54 1052 10940984 35.2

ratio 1 1 1 0.9 1 0.99 0.9 0.96 0.98



Experimental Results – cont’

 Clock topology Generation
 Benchmark circuit: r3
 Number of die layers: 4
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ρ = 0

TSVs = 657
Wirelength = 187cm

ρ = 0.1

TSVs = 359
Wirelength = 224cm

ρ = 1

TSVs = 3
Wirelength = 350cm



Conclusions
 The zero skew clock tree embedding algorithm ZCTE-3D 

is proposed.
 Allocates optimal number of TSVs. (Assign-Embedding-Layer)
 Minimizes the total wirelength by extending 2D DME algorithm to 

3D design space. (DME-3D)
 Wirelength optimal under the linear delay model.
 Suboptimal under the Elmore delay model.

 3D topology generation algorithm MMM-3D is proposed.
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Thank You !!!
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