

Dynamic Power Estimation for Deep Submicron Circuits with Process Variation

Quang Dinh, Deming Chen, Martin D. F. Wong

Department of Electrical and Computer Engineering University of Illinois, Urbana-Champaign

This work is partially supported by two NSF grants and Altera Corp.

- Introduction and motivation
- Related work
- Algorithm Description
 - Definitions
 - Gate characterization under process variation
 - Power estimation for a switch segment
 - Power estimation for a transition waveform
 - Power estimation for the circuit
 - Experimental Results
- Conclusions

Glitches

- Signal transitions consists of:
 - Functional transitions
 - Spurious transitions (Glitches)

- Glitch transitions can be 4-5X of functional transitions in some dataflow intensive designs [Raghunathan, TCAD'99]
- They can be 20% of total power in FPGAs [Li, TCAD'05]

Dynamic power under process variation

Mean of the dynamic power of a logic gate vs. input glitch width

Standard deviation of the dynamic power of a logic gate vs. input glitch width

5X difference

(e.g., between width 50ps and 100ps)

Related work

- Circuit power under process variation mainly focused on leakage power
 - [Mukhopadhyay, ISLPED'03], [Rao, TVLSI'04],
 [Chang, DAC'05], etc.
- Two previous works on dynamic power modeling with process variation
 - [Pilli & Sapatnekar, ISCAS'97]: Pioneer work; didn't estimate variation of dynamic power
 - [Alexander & Agrawal, ISVLSI'09]: only minimum and maximum bounds for delays are considered; no consideration of partial swing transitions

Definition: Transition Event

- A *transition event* at a particular node *n* in the circuit describes a possible transition at that node.
- No distinguishing between $0 \rightarrow 1$ and $1 \rightarrow 0$ transitions.
- Represented by three values ($p_t t_r \sigma_t$) as follows:
 - p is the probability for the transition to occur.
 - t is the mean of the time of the transition.
 - σ_t is the standard deviation of the transition time.
- For a transition event (0.2, 0.42 ns, 0.21 ns)
 - there is a likelihood of 20% that a transition occurs at a time around 0.42 ns, with a standard deviation of 0.21 ns.

Transition Waveforms

- The set of all transition events for a node are collectively represented by a *transition waveform*
 - {(p_1 , t_1 , σ_{t1}), (p_2 , t_2 , σ_{t2}),..., (p_N , t_N , σ_{tN})}.
 - *N* transition events: E_1 , E_2 ,..., E_N
 - The events E_i of (p_i , t_i , $\sigma_{ti})$ are sorted according to the increasing order of t_i

In this example, events E_2 , E_3 and E_N correspond to actual transitions, while events E_1 and E_{N-1} do not.

Switching Segments

• A *switching segment* is the duration from the beginning of a transition to just before the beginning of the next transition. A switching segment corresponds to exactly one transition.

Switching segment for partial-swing transition (E_1 , E_2) and full-swing transition (E_6 , E_7).

Algorithm: propagation through a wire segment or a gate

Source: E_{s} (p_{s} , t_{s} , σ_{ts}) Target: E_{T} (p_{T} , t_{T} , σ_{tT}) Input: $E_{l} (p_{l}, t_{l}, \sigma_{tl})$ Output: $E_{0} (p_{0}, t_{0}, \sigma_{t0})$

Wire segment

Gate

Dynamic power for an input glitch width

- *DPower(w_i)* is a random variable due to
 - variation in the load capacitance
 - variation in the gate delay from different inputs to the output

Gate power characterization

- Gate Characterization under
 - different input glitch widths (20 different widths, from 0ps to 190ps)
 - different load capacitances
- Build look-up tables
 - Look up and interpolate the mean $\mu_{\mathcal{C}}(w_i)$ and standard deviation $\sigma_{\mathcal{C}}(w_i)$ of dynamic power for a given w_i and a given load capacitance.

Compute probability for *w_i*

Discretize the width into w_0 , w_1 ,..., w_L . The probability that $w = w_i$ is:

$$\Pr\{w = w_{i}\} = \frac{1}{s_{w}\sqrt{2p}} \exp \frac{\left(w_{i} - m_{w}\right)^{2}}{m_{w}^{2}}$$

Normalize this probability as follows:

$$PN_{i} = \frac{\Pr\{w = w_{i}\}}{\Pr\{w = w_{j}\}}$$

$$j$$

Compute the mean of the dynamic power for a switch segment

For each w_i , we can look-up and interpolate the corresponding mean power $\mu_c(w_i)$ and standard deviation $\sigma_c(w_i)$

$$m_{C}(w_{i}) = E \overset{\text{le}}{\mathcal{D}}Power(w) | w = w_{i}$$

$$s_{C}(w_{i}) = \sqrt{E \left(DPower(w) - m_{C}(w_{i}) \right)^{2}} | w = w_{i}$$

The overall (unconditional) mean dynamic power μ_{DP}

$$m_{DP} = E \overset{\text{le}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{\text{power}}}{\stackrel{\text{power}}{\stackrel{\text{power}}}{\stackrel{power}}}}}}}}}}}}}}}$$

Compute the standard deviation for a switch segment

The overall (unconditional) standard deviation $\sigma_{\rm DP}$ is

$$s_{DP} = \sqrt{E \left(\frac{\partial P}{\partial P} \right)^2}$$

$$E \left(\frac{\partial B}{\partial P} Ower(w_i) - m_{DP} \right)^2 = \left(m_C(w_i) - m_{DP} \right)^2 + s_C(w_i)^2$$

$$S_{DP} = \sqrt{PN_i \mathcal{I}} \frac{PN_i \mathcal{I}}{m_C} \left(W_i \right) - m_{DP} \left(W_i \right)^2 + S_C \left(W_i \right)^2$$

Compute dynamic power for a gate

For a gate with the transition waveform $\{(p_1, t_1, \sigma_{t_1}), (p_2, t_2, \sigma_{t_2}), ..., (p_N, t_N, \sigma_{t_N})\}.$

$$m_{DPgate} = \underbrace{\mathbb{R}}_{i=1}^{N-1} \int_{j=i+1}^{N} Pr(i, j) \operatorname{Im}_{DP}(i, j)$$

$$S_{DPgate} = \sqrt{\underbrace{\mathbb{R}}_{i=1}^{N-1} \sum_{j=i+1}^{N} Pr(i,j) \mathfrak{I} S_{DP}(i,j)^{2}}$$

$$Pr(i,j) = p_{i} \perp p_{j} \perp \underbrace{\mathcal{I}}_{k=i+1}^{j-1} (1-p_{k})$$

Dynamic power for the circuit

• Assume that the power for the gates are independent random variables of normal distribution, the total dynamic power is:

Experiment Settings

- We used a 45nm Nangate FreePDK45 Generic
 Open Cell Library
- We introduced 20% random variation of normal distribution to four process parameters
 - $-W_g$, L_{eff} , T_{OX} and na
 - Similar variation is added to the unit R and C for wires
- 10000 Monte Carlo samples, each with 1000 clock cycles

Dynamic power estimation vs. HSPICE-based Monte Carlo simulation

		Dynamic P	Differences (%)			
	HSPICE				Our Model	
	mean	σ	mean	σ	mean	σ
Circuit 1	2.649	0.2346	2.719	0.2479	-2.64	-5.67
Circuit 2	3.094	0.3816	2.961	0.3996	4.30	-4.72
Circuit 3	3.481	0.3865	3.514	0.4114	-0.95	-6.44
Circuit 4	3.186	0.3371	3.097	0.3539	2.79	-4.98
Circuit 5	4.491	0.4829	4.664	0.4970	-3.85	-2.92
Average of Absolute Differences						4.95

Runtime comparison

	HSPICE (hours)	Our Model (seconds)	Speed-up (×10 ⁶)
Circuit 1	1692	2	3.0
Circuit 2	1824	2	3.3
Circuit 3	4326	2	7.8
Circuit 4	6120	2	11.0
Circuit 5	9776	2	17.6
Average			8.5

Results for ISCAS89 circuits

	Dynamic Po	Runtime (sec)	
	Mean (mW)	σ (%)	
C1355	1.10	36.7	8
C1908	2.56	16.8	11
C2670	4.24	16.1	43
C3540	6.86	34.0	40
C432	0.85	20.5	4
C499	1.01	32.5	7
C5315	10.46	19.0	90
C6288	20.16	24.4	64
C7552	13.42	17.2	119
C880	1.02	27.4	8

- We presented a novel dynamic power estimation method for circuits with process variation
- Our estimation takes into account the difference between partial-swing and full-swing glitches
- We obtained high accuracy estimates, with average errors of 3% for the means and 5% for the standard deviations
- Our estimation is also very fast, more than six orders of magnitude comparing to SPICE-Monte Carlo
- Future work includes consideration of the correlation among the process parameters

Thank You