Resilient Design in Scaled CMOS for Energy Efficiency

Vivek De
Intel Fellow
Director of Circuit Technology Research
Circuits Research Lab
Intel Labs
Resilient platforms

Resiliency framework

Applications
Programming System
OS
VM
Firmware
Microcode
Microarchitecture
Circuit & Design

Resiliency for performance, efficiency & reliability

Resilient platform features
- Error detection
- Fault diagnosis
- Fault confinement
- Error correction
- System recovery
- System adaptation
- System reconfiguration

Less recovery overhead
Lower error rate
Less silicon overhead
Dynamic adaptation & reconfiguration

Adapt & reconfigure for **best** power-performance
Voltage-frequency range limiters

Vmax/Fmax limiters
- Reliability
- Thermals
- Power delivery

Vmin limiters
- Circuit functional failures
- Soft errors
- Steep frequency roll-off
- Aging

Reliability & functional failures limit range
Voltage-frequency margins

- **V variation**
 - Voltage vs. Frequency
 - IR drop
 - Inductive droops
 - Load line variations

- **T variation**
 - Voltage vs. Frequency
 - Nominal T
 - Worst T

- **Aging**
 - Voltage vs. Frequency
 - Nominal
 - Worst

- **Path activity**
 - Voltage vs. Frequency
 - Nominal
 - Worst
Multi-voltage cache

Array Vmin

Cumulative fail rate

Array voltage

Worst die Vmin

Nominal array Vmin

SER, erratic bits

Vmin

Density

6T SRAM

Multi-V

6T SRAM

8T+ cell

LLC density

Push active Vmin limit to Vmax

uP Core

\[V_{\text{CORE}} = \sqrt{1.2V} \]

\[V_{\text{CORE}} = \sqrt{0.7V} \]

\[V_{\text{CORE}} = \sqrt{0.6V} \text{ (standby)} \]

\[V_{\text{LLC}} = 1.2V \]

Embedded level shifters for wordline & write drivers minimize area & power overhead
Dynamic multi-voltage cache

6T SRAM cell

<table>
<thead>
<tr>
<th></th>
<th>Read</th>
<th>Write</th>
<th>Retention</th>
</tr>
</thead>
<tbody>
<tr>
<td>NX</td>
<td>Weak</td>
<td>Strong</td>
<td></td>
</tr>
<tr>
<td>NPD</td>
<td>Strong</td>
<td>Weak</td>
<td>Balanced</td>
</tr>
<tr>
<td>PPU</td>
<td>Strong</td>
<td>Weak</td>
<td>Balanced</td>
</tr>
</tbody>
</table>

Wordline underdrive for read

Dynamic voltage collapse for write

Array to WL differential supply noise tracking

Pulse width control

45nm dynamic multi-V testchip

Transistor count: 6.2M
Chip Area: 0.91mm²
Vcc: 1.1V-0.7V
Testing interface: membrane probe card

MIN cell

Source: Intel

VWL(V)

Relative Single Bit Fails

0.7 0.8 0.9 1 1.1

1.0E+10 1.0E+08 1.0E+06 1.0E+04 1.0E+02 1.0E+00

26X less fails
Cache reconfiguration

Reduce cache size @ low V/F by eliminating failing words/bits

Word disable

Failing words

Bitmap of failing words

1-bit ECC

Word disable

Bit fix

10-bit ECC

Source: Intel

<table>
<thead>
<tr>
<th></th>
<th>Vmin (mV)</th>
<th>Density</th>
<th>Capacity</th>
<th>Latency (cycles)</th>
<th>IPC</th>
<th>EPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conventional</td>
<td>660</td>
<td>1*</td>
<td>1*</td>
<td>L1: 3</td>
<td>1*</td>
<td>1*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>L2: 20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32KB L1</td>
<td>500</td>
<td>0.92</td>
<td>0.5</td>
<td>4</td>
<td>0.95</td>
<td>0.5</td>
</tr>
<tr>
<td>Word disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2MB L2</td>
<td>500</td>
<td>1</td>
<td>0.75</td>
<td>23</td>
<td>0.95</td>
<td>0.5</td>
</tr>
<tr>
<td>Bit fix</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Normalized reference value

Source: Intel
Low-voltage logic design

Narrow muxes
No stack height > 2

Robust flip-flops

Robust level converters

Design & technology optimizations to balance range, performance & efficiency

Efficiency: MIPS/Watt

Improve range

Impact max performance

Efficiency: MIPS/Watt

Improve range

& efficiency

Performance

Performance
Low-voltage motion estimation engine

- **Multi-Vcc design**
 - 65nm CMOS
 - 70K transistors
 - Die area ~1mm²

- **Wide V-F range**

- **412 Gops/Watt @ 320 mV!**

- **Functional down to 240 mV!**
Dynamic V & F adaptation

Environment-aware dynamic adaptation
- Adapt F/V to V/T change → reduce V/T margin
- Adapt F/V to aging → reduce aging margin

Prototype chip in 90nm

Source: Intel
Resilient circuits

- Detect errors in critical path FFs
- Propagate error signals
- Correct errors by re-execution
- Feedback to adaptive V/F

65nm resilient circuits testchip
Resiliency experiments

Response to voltage droops

- Conventional Design:
 - 21% Throughput Gain
 - 37% Power Reduction

- Resilient Design:
 - 21% Throughput Gain
 - 37% Power Reduction

Source: Intel
Summary

• Resilient platforms offer better performance, energy efficiency and reliability

• Resiliency, dynamic adaptation and reconfiguration will be critical in scaled CMOS

• Logic and memory design innovations will be needed to keep pushing the voltage scaling limits