

ASP-DAC: 8A-1 A New Graph-Theoretic, Multi-Objective Layout Decomposition Framework for Double Patterning Lithography

Jae-Seok Yang, Katrina Lu¹, Minsik Cho², Kun Yuan, and David Z. Pan Dept. of ECE, The University of Texas at Austin, Austin, TX USA ¹Intel Corporation, Hillsboro, OR USA ²IBM T. J. Watson Research Center, Yorktown Heights, NY USA

Motivation

Bi-Partitioning Based Decomposition

Timing Driven Decomposition

- Experimental Results
- Future Works

Layout Decomposition

Balanced Density

Unbalanced decomposition: 38%(Red) and 62% (Blue)
Dense region causes a disconnection

Balanced decomposition: 48%(Red) an 52% (Blue)

Balanced density is preferred during layout decomposition

More Decomposition Requirements

Comparisons & Complexity

Previous Approach									
	Balanced Density	Overlay Compensation	Stitch Minimization	Complexity					
ICCAD08[1]	Νο	Νο	Yes (ILP)	NP-Complete					
Our Framework	Yes	Yes	Yes (Bi-Partitioning)	Polynomial Time O(NlogN)					

Complexity of Our Decomposition Algorithm

- N # of rectangles, and E # of neighboring pairs.
- 1) Segmentation from polygon to rectangles
- 2) Finding neighbors (sorting according to coordinate)
- 3) The complexity of projection to non-touching neighbor
- 4) Grouping and relative coloring using DFS
- 5) Group color assignment with min-cut partitioning **Overall complexity**

- → O(N)
- → O(NlogN)
- → O(E)
- → O(N+E)
- → O(N)
- → O(NlogN)

Overall decomposition flow

Grouping and Relative Coloring

Grouping and Relative Coloring is done by DFS(Complexity : O(N+E)) r1 and r4 should have different color r3 and r5 should have different color r2 can have any color

Relative coloring is a procedure assigning a color to remove conflicts

No conflict, 23 stitches

Color Assignment – Exact Solution

Color Assignment – Heuristic Solution

Theorem 1 : Min-Cut Based Stitch Minimization

The number of stitches in layout decomposition is equal to the cut size of the bi-partitioning problem in graph theory.

Graph Partitioning Based Decomposition

Modification of FM partitioning

Local Density Consideration

$$\begin{split} rW_{11} - smax_{11} &\leq |A_{11}| \leq rW_{11} + smax_{11} \\ rW_{12} - smax_{12} \leq |A_{12}| \leq rW_{12} + smax_{12} \\ &\vdots \\ rW_{ji} - smax_{ji} \leq |A_{ji}| \leq rW_{ji} + smax_{ji} \end{split}$$

We implemented FM partitioning with the two new features

Minimize **ADelay due to Overlay**

Timing Driven Decomposition(TDD)

20

Decomposition with TDD constraint

Runtime Result

Complexity: O(NlogN) → Don't need layout partitioning

Balanced Density Result

Exact vs. Heuristic comparison

Circuit #Group		#Touching neighbors	No balance, ILP			No balance, Graph Partition			48% balance, Graph Partition					
			(Exact)			(Proposed heuristic)			(Proposed heuristic)					
	#Groups		# Partitions for ILP	RunTime (total)	Inserted stitches	Balanced ratio(%)	RunTime comparison	RunTime (total)	Inserted stitches	Balanced ratio(%)	RunTime comparison	RunTime (total)	Inserted stitches	Balanced ratio(%)
C432	1512	1098	1	0.63	1	20.35	x1.4	0.46	1	33.60	x1.0	0.65	2	48.12
C499	3103	3280	12	100.85	50	24.01	x49.9	2.02	50	46.47	x49.9	2.02	50	48.50
C880	3758	2631	14	4525.57	198	30.09	x2773.0	1.63	198	47.12	x2807.4	1.61	198	48.87
C1355	4836	3083	18	702.4	114	18.91	x347.4	2.02	114	36.12	x344.0	2.04	114	48.00
C1908	7795	5472	18	37019.7	371	22.09	x9762.6	3.79	372	46.78	x10422	3.55	373	48.66
C2670	12863	9905	-	> 24Hr	-	-	-	6.7	947	43.51	-	6.87	948	49.30
C3540	16638	12021	-	> 24Hr	-	-	-	9.85	1034	41.46	-	10.07	1034	49.39
C5315	24483	18373	-	> 24Hr	-	_	_	17.43	1546	40.87	_	18.5	1549	48.00
C6288	19922	11577	-	> 24Hr	-	-	-	11.57	256	30.81	-	11.25	256	48.13
C7552	34309	24789	-	> 24Hr	-	-	-	30.89	2058	41.97	-	31.52	2060	48.02

Runtime : Bi-partitioning based decomposition is up to 10K faster than ILP based decomposition.

Accuracy : C1908 has two more stitches in our heuristic algorithm. All benchmarks except C1908 have the same #stitches.

Overlay compensation result

We could compensate overlay effect on timing More stitches → Less overlay effect on timing

Conclusion & Future Works

Graph-based multi-objective decomposition

- > Super linear time complexity : O(NlogN)
- > Stitch minimization
- Balanced density
- > Constraint insertion : overlay compensation

Future work

- Multiple Decomposition for Multiple Patterning
- Correlation Aware Decomposition