
Statistical Timing Verification for Transparently
Latched Circuits through Structural Graph

Traversal

Xingliang Yuan and Jia Wang,
Electrical and Computer Engineering Department,

Illinois Institute of Technology, USA

January, 2010

1/30

Introduction

Problem Formulation

SGT-PC Algorithm

Experiments

Conclusion

2/30

Outline

Introduction

Problem Formulation

SGT-PC Algorithm

Experiments

Conclusion

3/30

Timing Verification for Transparently Latched Circuits

under Process Variation

◮ Level-triggered transparent latches: low overhead in timing, area and
power.

◮ Circuit timing under process variation: addressed by many researches
using statistical static timing analysis(SSTA).

◮ Most previous works: assume their timing graphs are acyclic
(effective for circuits using flip-flops).

◮ Recent works on latch timing verification:
◮ Chen’s PCycle[Chen el.at’06] is optimistic for missing cycles through

a structural graph traversal.
◮ Zhang’s work[Zhang el.at’06] convergence depends on the accuracy

of the statistical operations and the number of the iterations cannot
be bounded.

4/30

Timing Verification for Transparently Latched Circuits

under Process Variation

◮ Level-triggered transparent latches: low overhead in timing, area and
power.

◮ Circuit timing under process variation: addressed by many researches
using statistical static timing analysis(SSTA).

◮ Most previous works: assume their timing graphs are acyclic
(effective for circuits using flip-flops).

◮ Recent works on latch timing verification:
◮ Chen’s PCycle[Chen el.at’06] is optimistic for missing cycles through

a structural graph traversal.
◮ Zhang’s work[Zhang el.at’06] convergence depends on the accuracy

of the statistical operations and the number of the iterations cannot
be bounded.

4/30

Timing Verification for Transparently Latched Circuits

under Process Variation

◮ Level-triggered transparent latches: low overhead in timing, area and
power.

◮ Circuit timing under process variation: addressed by many researches
using statistical static timing analysis(SSTA).

◮ Most previous works: assume their timing graphs are acyclic
(effective for circuits using flip-flops).

◮ Recent works on latch timing verification:
◮ Chen’s PCycle[Chen el.at’06] is optimistic for missing cycles through

a structural graph traversal.
◮ Zhang’s work[Zhang el.at’06] convergence depends on the accuracy

of the statistical operations and the number of the iterations cannot
be bounded.

4/30

Timing Verification for Transparently Latched Circuits

under Process Variation

◮ Level-triggered transparent latches: low overhead in timing, area and
power.

◮ Circuit timing under process variation: addressed by many researches
using statistical static timing analysis(SSTA).

◮ Most previous works: assume their timing graphs are acyclic
(effective for circuits using flip-flops).

◮ Recent works on latch timing verification:
◮ Chen’s PCycle[Chen el.at’06] is optimistic for missing cycles through

a structural graph traversal.
◮ Zhang’s work[Zhang el.at’06] convergence depends on the accuracy

of the statistical operations and the number of the iterations cannot
be bounded.

4/30

Our Contribution

◮ Structural Graph Traversal–Positive Cycle Detection :
◮ Covers all cycles through a structural graph traversal.
◮ Terminates within a polynomial number of statistical operation.

5/30

Statistical Static Timing Analysis

◮ Assume the random delay d of a gate or an interconnect is gaussian
distributed.

◮ The sum of two gaussian random valuables is still gaussian
distributed.

◮ The max of them is approximately gaussian distributed [Clark’62].

◮ Block based statistical static timing analysis(SSTA)[Chang
el.at’04][Visweswariah el.at’04]: uses statistical max and sum

operation to calculate the distribution of maximal path delay from
inputs to outputs.

6/30

Statistical Static Timing Analysis

◮ Assume the random delay d of a gate or an interconnect is gaussian
distributed.

◮ The sum of two gaussian random valuables is still gaussian
distributed.

◮ The max of them is approximately gaussian distributed [Clark’62].

◮ Block based statistical static timing analysis(SSTA)[Chang
el.at’04][Visweswariah el.at’04]: uses statistical max and sum

operation to calculate the distribution of maximal path delay from
inputs to outputs.

6/30

Statistical Static Timing Analysis

◮ Assume the random delay d of a gate or an interconnect is gaussian
distributed.

◮ The sum of two gaussian random valuables is still gaussian
distributed.

◮ The max of them is approximately gaussian distributed [Clark’62].

◮ Block based statistical static timing analysis(SSTA)[Chang
el.at’04][Visweswariah el.at’04]: uses statistical max and sum

operation to calculate the distribution of maximal path delay from
inputs to outputs.

6/30

Statistical Static Timing Analysis

◮ Assume the random delay d of a gate or an interconnect is gaussian
distributed.

◮ The sum of two gaussian random valuables is still gaussian
distributed.

◮ The max of them is approximately gaussian distributed [Clark’62].

◮ Block based statistical static timing analysis(SSTA)[Chang
el.at’04][Visweswariah el.at’04]: uses statistical max and sum

operation to calculate the distribution of maximal path delay from
inputs to outputs.

6/30

Clock Methodology For Latched Circuits

0 C

φ1

φ2

φ3

s1

s2

s3

T1

T2

T3

2C

s1

s2

s3

T1

T2

T3

e1

e2

e3

e1

e2

e3

Figure: Three phase non-overlapping clock

◮ L: the set of the transparent latches in a circuit.

◮ A clock schedule is the assignment of a clock signal ϕi to each latch
i ∈ L.

◮ All clock signals should be of the same clock period c.
◮ But can have different phases.

◮ Active interval length Ti is denoted by its starting and ending time
(si , ei):Ti = ei − si .

7/30

Latch Latest Timing for Setup Constraints

Known:
∆ij : longest combinational path delay from latch i to latch j .
Si : the setup time of latch i .
Unknown:
Ai : the latest signal arrival time of latch i .
Di : the latest signal departure time of latch i .

Latest timing constraints[Sakallah et.al’92]:
Max-delay constraint:
Ai −Dj ≥ ∆ji − Epj pi , ∀j → i ,

Departure time constraints:
Dj ≥ Aj , Dj ≥ c − tpj , ∀j ∈ L.

Setup time constraint:
Aj ≤ c − Sj , ∀j ∈ L.

(Ai ,Di) are in latch i ’s local time, i.e. starting at the falling edge of
previous clock signal.

8/30

Latch Latest Constraints Graph

[Chen el.at’06]

a b

c

Ab

Ac

Da
Db

Dc

O

Aa

Figure: A three latch circuit and its latest timing constraint graph

Consider a to b, latest timing constraints:
Ab −Da ≥ ∆ab − Epapb ,

Db − Ab ≥ 0,
Db −O ≥ c − tpb ,

O − Ab ≥ Sb − c,

◮ Earliest timing constraints graph are constructed similarly for the hold time
constraint verification.

9/30

Structural Verification of Clock Schedule

◮ Deterministic situation[Chen el.at’06]: the given clock of a latched
circuit is valid iff

◮ The latest constraint graph has no positive cycle,
◮ The earliest constraint graph has no negative cycle.

◮ Statistical situation[Chen el.at’06]: the timing yield of the circuit,
that the clock schedule is valid, is equal to the probability that

◮ The latest constraint graph has no positive cycle,
◮ The earliest constraint graph has no negative cycle.

10/30

Outline

Introduction

Problem Formulation

SGT-PC Algorithm

Experiments

Conclusion

11/30

Problem Formulation

Problem (Statistical Positive Cycle Detection)

Let G = (V ,E) be a graph. For each edge (i , j) ∈ E, let w(i , j) be the

random edge weight. Assume that the joint distribution of w is known.

Determine a random variable X and its distribution such that G has a

positive cycle iff X > 0.

12/30

Outline

Introduction

Problem Formulation

SGT-PC Algorithm

Experiments

Conclusion

13/30

Algorithmic Idea

◮ w(c):the cycle weight.

w(c)
∆
=

∑

(i ,j)∈c

w(i , j).

◮ Xall : the maximum of all the cycle weights.

Xall
∆
= max

cycle c
w(c).

◮ Xall is hard to compute since the number of cycle is infinite in a
graph.

14/30

Algorithmic Idea

◮ w(c):the cycle weight.

w(c)
∆
=

∑

(i ,j)∈c

w(i , j).

◮ Xall : the maximum of all the cycle weights.

Xall
∆
= max

cycle c
w(c).

◮ Xall is hard to compute since the number of cycle is infinite in a
graph.

14/30

Algorithmic Idea

◮ w(c):the cycle weight.

w(c)
∆
=

∑

(i ,j)∈c

w(i , j).

◮ Xall : the maximum of all the cycle weights.

Xall
∆
= max

cycle c
w(c).

◮ Xall is hard to compute since the number of cycle is infinite in a
graph.

14/30

Algorithmic Idea

◮ Simple cycle:traverses any vertex at most once.
◮ S : the set of simple cycles in G .
◮ S : a finite set.

Lemma
Define

XS
∆
= max

c∈S
w(c).

Then XS > 0 iff Xall > 0.

◮ Hard to enumerate simple cycles explicitly.

Lemma
If S ⊆ S∗, then XS∗ > 0 iff XS > 0.

15/30

Algorithmic Idea

◮ Simple cycle:traverses any vertex at most once.
◮ S : the set of simple cycles in G .
◮ S : a finite set.

Lemma
Define

XS
∆
= max

c∈S
w(c).

Then XS > 0 iff Xall > 0.

◮ Hard to enumerate simple cycles explicitly.

Lemma
If S ⊆ S∗, then XS∗ > 0 iff XS > 0.

15/30

Algorithmic Idea

◮ Simple cycle:traverses any vertex at most once.
◮ S : the set of simple cycles in G .
◮ S : a finite set.

Lemma
Define

XS
∆
= max

c∈S
w(c).

Then XS > 0 iff Xall > 0.

◮ Hard to enumerate simple cycles explicitly.

Lemma
If S ⊆ S∗, then XS∗ > 0 iff XS > 0.

15/30

SGT-PC Algorithm

◮ Li : the set of cycles in G that contain at most |V | vertices and
traverse the vertex i exactly once.

S ⊆ L
∆
=

⋃

i∈V

Li .

◮ Defining Xi
∆
= maxc∈Li

w(c), we have,

XL = max
i∈V

Xi .

16/30

SGT-PC Algorithm

◮ Li : the set of cycles in G that contain at most |V | vertices and
traverse the vertex i exactly once.

S ⊆ L
∆
=

⋃

i∈V

Li .

◮ Defining Xi
∆
= maxc∈Li

w(c), we have,

XL = max
i∈V

Xi .

16/30

Computer Xi by a Breadth First Search like Traversal

a b

cd

1

2
5

2

4

1 1

a b

2

c

3

d

4

vertex

stage

1

3 4

6

7

10

2 2

11

9
5

◮ Xa = 7.

◮ XL = max(Xa,Xb,Xc ,Xd).

◮ Use statistical sum and max to compute Xi in statistical situation.

17/30

SGT-PC Algorithm

Subroutine VertexDist
Inputs

G = (V ,E): the graph. i : a vertex in V .
Outputs

Xi : maximum cycle weight for cycles passing i exactly once.
1 For all j ∈ V :

2 W 1
ij
←

{

max(i,j)∈E w(i , j), ∃(i , j) ∈ E ,

−∞, ∄(i , j) ∈ E .

3 For k ← 2 to |V |:
4 For all j ∈ V :

5 W k
ij
← max(

v 6=i
)

∧
(

(v,j)∈E
)W k−1

iv
+ w(v , j).

6 Xi ← max(W 1
ii ,W

2
ii , . . . ,W

|V |
ii

).

Algorithm SGT-PC
Inputs

G = (V ,E): the graph.
Outputs

XL: maximum cycle weight in L

1 For all i ∈ V :
2 Xi ← VertexDist(G , i).
3 XL ← maxi∈V Xi .

18/30

Algorithm Complexity

Theorem

Assume that each random variable requires O(R) storage and each sum

or max operation requires O(T) time.

◮ The time complexity of the SGT-PC algorithm is O(T |V |2|E |);

◮ The space complexity is O(R |V |).

19/30

Practical Implementation Considerations

◮ Graph decomposition by strongly connected components(SCC).

◮ Limiting number of traversal stages in VertexDist.

20/30

Graph Decomposition by SCC

a

b c

d

1

25

2 4

3

e

1

a b

2

c

3

d

4

vertex

stage

5

3

4

8
9

12

e

14

2

6

Figure: A graph with a path never traveling back to a.

21/30

The SGT-PCSCC Algorithm

Q: manage the data structure by storing the discovered SCCs but not
processed.

22/30

Limiting Number of Traversal Stages

◮ Trade-off between solution accuracy and running time.
◮ A bound N to the number of stages;
◮ Some cycles could be missed.

◮ Motivation:
◮ If the missed cycle is not a simple cycle, the solution accuracy will

not be affected;
◮ Time borrowing will tolerate acceptable variations.

◮ The designers to determine the bound N .

23/30

Limiting Number of Traversal Stages

◮ Trade-off between solution accuracy and running time.
◮ A bound N to the number of stages;
◮ Some cycles could be missed.

◮ Motivation:
◮ If the missed cycle is not a simple cycle, the solution accuracy will

not be affected;
◮ Time borrowing will tolerate acceptable variations.

◮ The designers to determine the bound N .

23/30

Limiting Number of Traversal Stages

◮ Trade-off between solution accuracy and running time.
◮ A bound N to the number of stages;
◮ Some cycles could be missed.

◮ Motivation:
◮ If the missed cycle is not a simple cycle, the solution accuracy will

not be affected;
◮ Time borrowing will tolerate acceptable variations.

◮ The designers to determine the bound N .

23/30

Outline

Introduction

Problem Formulation

SGT-PC Algorithm

Experiments

Conclusion

24/30

Experiments

◮ Experimental sequential circuits: ISCAS89 benchmark.
◮ Each flip-flop is replaced by a pair of transparent latches.
◮ One is moved among the combinational path while preserving the

circuit functionality.
◮ Two-phase clock is assigned to the latches.

◮ Generate gate delays:
◮ A nominal delay for a gate is equal to the number of its fanouts.
◮ Assign a standard deviation to each gate based on spatial variations

(within 20− 30% of its nominal delay).

◮ Latest latch timing graph: generated by applying block-based SSTA
techniques.

◮ Chen’s PCycle, SGT-PCSCC , and Monte Carlo simulation:
implemented in C++, compiled by GCC version 3.4, and run on a
Linux PC with a 2.4GHz processor and 4.0GB memory.

25/30

Experiments

Table: Comparison of Chen’s PCycle, SGT-PCSCC , and Monte Carlo simulation.

circuit PCycle SGT-PCSCC Monte Carlo
name |V | |E | yield% time(s) error% yield% time(s) error% yield% time(s)
s27 7 21 97.37 0.02 0.11 97.37 0.01 0.11 97.26 0.34
s208.1 27 113 99.16 0.08 0.54 98.90 0.02 0.28 98.62 3.45
s382 49 249 99.76 0.25 2.53 97.37 0.03 0.14 97.23 11.68
s420.1 50 283 98.37 0.25 -0.21 98.82 0.03 0.24 98.58 13.43
s526 53 263 94.96 0.27 0.05 94.81 0.12 -0.10 94.91 19.93
s832 83 336 97.99 0.57 -0.37 98.06 0.15 -0.3 98.36 26.99
s1196 127 391 97.77 0.76 -1.63 99.39 0.43 -0.01 99.40 68.34
s1423 159 2315 96.38 2.39 1.55 94.66 0.64 -0.17 94.83 246.14
s5378* 514 2697 97.19 26.06 1.15 96.37 3.16 0.33 96.04 1228.06
s13207* 1365 5714 97.92 197.20 1.93 96.15 38.28 0.16 95.99 7515.15
s13207.1* 1337 5673 99.93 204.94 1.05 98.98 35.66 0.10 98.88 7613.59
s15850* 1275 17901 98.38 542.25 0.80 98.19 47.05 0.61 97.58 15136.97
s35932* 3145 10838 97.12 977.72 -2.08 99.50 466.29 0.30 99.20 35704.76
s38417* 3419 34971 96.91 3083.51 -0.69 97.62 494.23 0.02 97.60 85445.45
s38584* 4253 26208 99.70 2906.01 0.70 99.31 968.06 0.34 98.97 93268.92

Circuits with a ∗ mark, limit the number of traversal stages. On average,
the error of the SGT-PCSCC is 0.21%, while the error of the PCycle is
1.03%.

26/30

Outline

Introduction

Problem Formulation

SGT-PC Algorithm

Experiments

Conclusion

27/30

Conclusion

◮ SGT-PC:
◮ Cover all cycles through a structural graph traversal;
◮ Within O(|V |2|E |) number of statistical sum and max operations.

◮ Practical Implementation:
◮ Decomposition technique: strongly connected components;
◮ Heuristic approach: limit the region of graph traversal to allow

designers to trade-off accuracy with running time.

◮ Further work:
◮ Reduce the statistical max operation errors;
◮ Bound the circuit yield.

28/30

Thank you!

Questions?

29/30

Appendix

Table: Comparison on the count of sum and max operations for Chen’s PCycle
and SGT-PCSCC .

circuit PCycle SGT-PCSCC

name sum# max# sum# max#
s27 2173 856 765 249
s208.1 26352 16146 7235 2076
s382 102916 67148 24396 7633
s420.1 106078 72754 21036 7538
s526 116123 79674 152221 75059
s832 314128 200318 207288 73183
s1196 459642 261392 659943 202957
s1423 6823K 5478K 741K 339K
s5378* 13900K 9193K 1849K 512K
s13207* 88255K 52408K 540K 103K
s13207.1* 95489K 57157K 1467K 277K
s15850* 267978K 211626K 23694K 10540K
s35932* 274623K 167203K 119737K 30157K
s38417* 1571896K 1278600K 6976K 2350K
s38584* 1377417K 970265K 84463K 18272K

Circuits with a ∗ mark, limit the number of traversal stages.

30/30

	Outline
	Introduction
	Problem Formulation
	SGT-PC Algorithm
	Experiments
	Conclusion

