## Statistical Timing Verification for Transparently Latched Circuits through Structural Graph Traversal

Xingliang Yuan and Jia Wang, Electrical and Computer Engineering Department, Illinois Institute of Technology, USA

January, 2010

Introduction

**Problem Formulation** 

SGT-PC Algorithm

Experiments

Conclusion

## Outline

#### Introduction

**Problem Formulation** 

SGT-PC Algorithm

Experiments

Conclusion

#### Level-triggered transparent latches: low overhead in timing, area and power.

- Circuit timing under process variation: addressed by many researches using statistical static timing analysis(SSTA).
- Most previous works: assume their timing graphs are acyclic (effective for circuits using flip-flops).
- Recent works on latch timing verification:
  - Chen's PCycle[Chen el.at'06] is optimistic for missing cycles through a structural graph traversal.
  - Zhang's work[Zhang el.at'06] convergence depends on the accuracy of the statistical operations and the number of the iterations cannot be bounded.

- Level-triggered transparent latches: low overhead in timing, area and power.
- Circuit timing under process variation: addressed by many researches using statistical static timing analysis(SSTA).
- Most previous works: assume their timing graphs are acyclic (effective for circuits using flip-flops).
- Recent works on latch timing verification:
  - Chen's *PCycle*[Chen el.at'06] is optimistic for missing cycles through a structural graph traversal.
  - Zhang's work[Zhang el.at'06] convergence depends on the accuracy of the statistical operations and the number of the iterations cannot be bounded.

- Level-triggered transparent latches: low overhead in timing, area and power.
- Circuit timing under process variation: addressed by many researches using statistical static timing analysis(SSTA).
- Most previous works: assume their timing graphs are acyclic (effective for circuits using flip-flops).
- Recent works on latch timing verification:
  - Chen's PCycle[Chen el.at'06] is optimistic for missing cycles through a structural graph traversal.
  - Zhang's work[Zhang el.at'06] convergence depends on the accuracy of the statistical operations and the number of the iterations cannot be bounded.

- Level-triggered transparent latches: low overhead in timing, area and power.
- Circuit timing under process variation: addressed by many researches using statistical static timing analysis(SSTA).
- Most previous works: assume their timing graphs are acyclic (effective for circuits using flip-flops).
- Recent works on latch timing verification:
  - Chen's *PCycle*[Chen el.at'06] is optimistic for missing cycles through a structural graph traversal.
  - Zhang's work[Zhang el.at'06] convergence depends on the accuracy of the statistical operations and the number of the iterations cannot be bounded.

- Structural Graph Traversal–Positive Cycle Detection :
  - Covers *all* cycles through a structural graph traversal.
  - Terminates within a *polynomial* number of statistical operation.

## Statistical Static Timing Analysis

- ► Assume the random delay *d* of a gate or an interconnect is gaussian distributed.
- ► The **sum** of two gaussian random valuables is still gaussian distributed.
- ▶ The max of them is approximately gaussian distributed [Clark'62].
- Block based statistical static timing analysis(SSTA)[Chang el.at'04][Visweswariah el.at'04]: uses statistical max and sum operation to calculate the distribution of maximal path delay from inputs to outputs.

- ► Assume the random delay *d* of a gate or an interconnect is gaussian distributed.
- The sum of two gaussian random valuables is still gaussian distributed.
- ▶ The max of them is approximately gaussian distributed [Clark'62].
- Block based statistical static timing analysis(SSTA)[Chang el.at'04][Visweswariah el.at'04]: uses statistical max and sum operation to calculate the distribution of maximal path delay from inputs to outputs.

- Assume the random delay d of a gate or an interconnect is gaussian distributed.
- The sum of two gaussian random valuables is still gaussian distributed.
- ▶ The max of them is approximately gaussian distributed [Clark'62].
- Block based statistical static timing analysis(SSTA)[Chang el.at'04][Visweswariah el.at'04]: uses statistical max and sum operation to calculate the distribution of maximal path delay from inputs to outputs.

- Assume the random delay d of a gate or an interconnect is gaussian distributed.
- The sum of two gaussian random valuables is still gaussian distributed.
- ▶ The max of them is approximately gaussian distributed [Clark'62].
- Block based statistical static timing analysis(SSTA)[Chang el.at'04][Visweswariah el.at'04]: uses statistical max and sum operation to calculate the distribution of maximal path delay from inputs to outputs.

#### Clock Methodology For Latched Circuits



Figure: Three phase non-overlapping clock

- L: the set of the transparent latches in a circuit.
- A clock schedule is the assignment of a clock signal φ<sub>i</sub> to each latch i ∈ L.
  - All clock signals should be of the same clock period *c*.
  - But can have different phases.
- Active interval length  $T_i$  is denoted by its starting and ending time  $(s_i, e_i)$ :  $T_i = e_i s_i$ .

#### Latch Latest Timing for Setup Constraints

Known:

 $\Delta_{ii}$ : longest combinational path delay from latch *i* to latch *j*.

 $S_i$ : the setup time of latch *i*.

Unknown:

 $A_i$ : the latest signal arrival time of latch *i*.

 $D_i$ : the latest signal departure time of latch *i*.



 $(A_i, D_i)$  are in latch *i*'s local time, i.e. starting at the falling edge of previous clock signal.

#### Latch Latest Constraints Graph

[Chen el.at'06]



Figure: A three latch circuit and its latest timing constraint graph

Consider a to b, latest timing constraints:

$$\begin{array}{l} A_b - D_a \geq \Delta_{ab} - E_{P_a P_b}, \\ D_b - A_b \geq 0, \\ D_b - O \geq c - t_{P_b}, \\ O - A_b \geq S_b - c, \end{array}$$

 Earliest timing constraints graph are constructed similarly for the hold time constraint verification.

### Structural Verification of Clock Schedule

- Deterministic situation[Chen el.at'06]: the given clock of a latched circuit is valid iff
  - The latest constraint graph has no positive cycle,
  - The earliest constraint graph has no negative cycle.
- Statistical situation[Chen el.at'06]: the timing yield of the circuit, that the clock schedule is valid, is equal to the **probability** that
  - The latest constraint graph has no positive cycle,
  - The earliest constraint graph has no negative cycle.

## Outline

Introduction

**Problem Formulation** 

SGT-PC Algorithm

Experiments

Conclusion

#### Problem (Statistical Positive Cycle Detection)

Let G = (V, E) be a graph. For each edge  $(i, j) \in E$ , let w(i, j) be the random edge weight. Assume that the joint distribution of w is known. Determine a random variable X and its distribution such that G has a positive cycle iff X > 0.

## Outline

Introduction

**Problem Formulation** 

SGT-PC Algorithm

Experiments

Conclusion

► w(c):the cycle weight.

$$w(c) \stackrel{\scriptscriptstyle \Delta}{=} \sum_{(i,j)\in c} w(i,j).$$

► X<sub>all</sub>: the maximum of all the cycle weights.

$$X_{all} \stackrel{ riangle}{=} \max_{cycle c} w(c).$$

► X<sub>all</sub> is hard to compute since the number of cycle is infinite in a graph.

► w(c):the cycle weight.

$$w(c) \stackrel{\scriptscriptstyle \Delta}{=} \sum_{(i,j)\in c} w(i,j).$$

•  $X_{all}$ : the maximum of all the cycle weights.

$$X_{all} \stackrel{\scriptscriptstyle \Delta}{=} \max_{\operatorname{cycle} c} w(c).$$

► X<sub>all</sub> is hard to compute since the number of cycle is infinite in a graph.

► w(c):the cycle weight.

$$w(c) \stackrel{\scriptscriptstyle \Delta}{=} \sum_{(i,j)\in c} w(i,j).$$

•  $X_{all}$ : the maximum of all the cycle weights.

$$X_{all} \stackrel{ riangle}{=} \max_{ ext{cycle } c} w(c).$$

X<sub>all</sub> is hard to compute since the number of cycle is infinite in a graph.

## Algorithmic Idea

#### Simple cycle:traverses any vertex at most once.

- ► *S*: the set of simple cycles in *G*.
- S: a finite set.

#### Lemma

Define

$$X_S \stackrel{\Delta}{=} \max_{c \in S} w(c).$$

Then  $X_S > 0$  iff  $X_{all} > 0$ .

Hard to enumerate simple cycles explicitly.

#### Lemma

If  $S \subseteq S^*$ , then  $X_{S^*} > 0$  iff  $X_S > 0$ .

## Algorithmic Idea

Simple cycle:traverses any vertex at most once.

- ► *S*: the set of simple cycles in *G*.
- S: a finite set.

#### Lemma

#### Define

$$X_S \stackrel{\Delta}{=} \max_{c \in S} w(c).$$

Then  $X_S > 0$  iff  $X_{all} > 0$ .

Hard to enumerate simple cycles explicitly.

#### \_emma

If  $S \subseteq S^*$ , then  $X_{S^*} > 0$  iff  $X_S > 0$ .

## Algorithmic Idea

Simple cycle:traverses any vertex at most once.

- ► *S*: the set of simple cycles in *G*.
- S: a finite set.

#### Lemma

Define

$$X_S \stackrel{\Delta}{=} \max_{c \in S} w(c).$$

Then  $X_S > 0$  iff  $X_{all} > 0$ .

Hard to enumerate simple cycles explicitly.

#### Lemma

If  $S \subseteq S^*$ , then  $X_{S^*} > 0$  iff  $X_S > 0$ .

► L<sub>i</sub>: the set of cycles in G that contain at most |V| vertices and traverse the vertex i exactly once.

$$S\subseteq L\stackrel{\scriptscriptstyle \Delta}{=}\bigcup_{i\in V}L_i.$$

• Defining  $X_i \triangleq \max_{c \in L_i} w(c)$ , we have,

$$X_L = \max_{i \in V} X_i.$$

► L<sub>i</sub>: the set of cycles in G that contain at most |V| vertices and traverse the vertex i exactly once.

$$S\subseteq L\stackrel{\scriptscriptstyle \Delta}{=}\bigcup_{i\in V}L_i.$$

• Defining  $X_i \stackrel{\Delta}{=} \max_{c \in L_i} w(c)$ , we have,

$$X_L = \max_{i \in V} X_i.$$

#### Computer $X_i$ by a Breadth First Search like Traversal



- ►  $X_a = 7$ .
- $X_L = max(X_a, X_b, X_c, X_d).$

▶ Use statistical **sum** and **max** to compute *X<sub>i</sub>* in statistical situation.

## SGT-PC Algorithm

Subroutine VertexDist Inputs G = (V, E): the graph. *i*: a vertex in V. Outputs  $X_i$ : maximum cycle weight for cycles passing *i* exactly once. **For** all  $i \in V$ : 1  $W_{ij}^{1} \leftarrow \begin{cases} \max_{(i,j) \in E} w(i,j), & \exists (i,j) \in E, \\ -\infty, & \nexists (i,j) \in E. \end{cases}$ 2 3 For  $k \leftarrow 2$  to |V|: 4 For all  $i \in V$ : 5  $W_{ij}^k \leftarrow \max_{\{v \neq i\} \land ((v,j) \in E)} W_{iv}^{k-1} + w(v,j).$  $X_i \leftarrow \max(W_{ii}^1, W_{ii}^2, \dots, W_{ii}^{|V|}).$ 6

 Algorithm SGT-PC

 Inputs
 G = (V, E): the graph.

 Outputs
  $X_L$ : maximum cycle weight in L 

 1 For all  $i \in V$ :
 2

 2
  $X_i \leftarrow \text{VertexDist}(G, i)$ .

 3
  $X_L \leftarrow \max_{i \in V} X_i$ .

#### Theorem

Assume that each random variable requires O(R) storage and each sum or max operation requires O(T) time.

- The time complexity of the SGT-PC algorithm is  $O(T|V|^2|E|)$ ;
- The space complexity is O(R|V|).

#### Practical Implementation Considerations

- Graph decomposition by strongly connected components(SCC).
- Limiting number of traversal stages in VertexDist.

### Graph Decomposition by SCC



Figure: A graph with a path never traveling back to a.

## The SGT-PC<sub>SCC</sub> Algorithm



Q: manage the data structure by storing the discovered SCCs but not processed.

### Limiting Number of Traversal Stages

#### ► Trade-off between solution accuracy and running time.

- A bound *N* to the number of stages;
- Some cycles could be missed.
- Motivation:
  - If the missed cycle is not a simple cycle, the solution accuracy will not be affected;
  - Time borrowing will tolerate acceptable variations.
- ▶ The designers to determine the bound *N*.

### Limiting Number of Traversal Stages

- ► Trade-off between solution accuracy and running time.
  - A bound N to the number of stages;
  - Some cycles could be missed.
- Motivation:
  - If the missed cycle is not a simple cycle, the solution accuracy will not be affected;
  - Time borrowing will tolerate acceptable variations.

▶ The designers to determine the bound *N*.

### Limiting Number of Traversal Stages

- ► Trade-off between solution accuracy and running time.
  - A bound N to the number of stages;
  - Some cycles could be missed.
- Motivation:
  - If the missed cycle is not a simple cycle, the solution accuracy will not be affected;
  - Time borrowing will tolerate acceptable variations.
- ▶ The designers to determine the bound *N*.

## Outline

Introduction

**Problem Formulation** 

SGT-PC Algorithm

#### Experiments

Conclusion

#### Experiments

• Experimental sequential circuits: ISCAS89 benchmark.

- Each flip-flop is replaced by a pair of transparent latches.
- One is moved among the combinational path while preserving the circuit functionality.
- Two-phase clock is assigned to the latches.
- Generate gate delays:
  - A nominal delay for a gate is equal to the number of its fanouts.
  - Assign a standard deviation to each gate based on spatial variations (within 20 - 30% of its nominal delay).
- Latest latch timing graph: generated by applying block-based SSTA techniques.
- Chen's PCycle, SGT-PC<sub>SCC</sub>, and Monte Carlo simulation: implemented in C++, compiled by GCC version 3.4, and run on a Linux PC with a 2.4GHz processor and 4.0GB memory.

#### Experiments

| circuit   |      |          | PCycle |         |        | SGT-PC <sub>SCC</sub> |         |        | Monte Carlo |          |
|-----------|------|----------|--------|---------|--------|-----------------------|---------|--------|-------------|----------|
| name      | V    | <i>E</i> | yield% | time(s) | error% | yield%                | time(s) | error% | yield%      | time(s)  |
| s27       | 7    | 21       | 97.37  | 0.02    | 0.11   | 97.37                 | 0.01    | 0.11   | 97.26       | 0.34     |
| s208.1    | 27   | 113      | 99.16  | 0.08    | 0.54   | 98.90                 | 0.02    | 0.28   | 98.62       | 3.45     |
| s382      | 49   | 249      | 99.76  | 0.25    | 2.53   | 97.37                 | 0.03    | 0.14   | 97.23       | 11.68    |
| s420.1    | 50   | 283      | 98.37  | 0.25    | -0.21  | 98.82                 | 0.03    | 0.24   | 98.58       | 13.43    |
| s526      | 53   | 263      | 94.96  | 0.27    | 0.05   | 94.81                 | 0.12    | -0.10  | 94.91       | 19.93    |
| s832      | 83   | 336      | 97.99  | 0.57    | -0.37  | 98.06                 | 0.15    | -0.3   | 98.36       | 26.99    |
| s1196     | 127  | 391      | 97.77  | 0.76    | -1.63  | 99.39                 | 0.43    | -0.01  | 99.40       | 68.34    |
| s1423     | 159  | 2315     | 96.38  | 2.39    | 1.55   | 94.66                 | 0.64    | -0.17  | 94.83       | 246.14   |
| s5378*    | 514  | 2697     | 97.19  | 26.06   | 1.15   | 96.37                 | 3.16    | 0.33   | 96.04       | 1228.06  |
| s13207*   | 1365 | 5714     | 97.92  | 197.20  | 1.93   | 96.15                 | 38.28   | 0.16   | 95.99       | 7515.15  |
| s13207.1* | 1337 | 5673     | 99.93  | 204.94  | 1.05   | 98.98                 | 35.66   | 0.10   | 98.88       | 7613.59  |
| s15850*   | 1275 | 17901    | 98.38  | 542.25  | 0.80   | 98.19                 | 47.05   | 0.61   | 97.58       | 15136.97 |
| s35932*   | 3145 | 10838    | 97.12  | 977.72  | -2.08  | 99.50                 | 466.29  | 0.30   | 99.20       | 35704.76 |
| s38417*   | 3419 | 34971    | 96.91  | 3083.51 | -0.69  | 97.62                 | 494.23  | 0.02   | 97.60       | 85445.45 |
| s38584*   | 4253 | 26208    | 99.70  | 2906.01 | 0.70   | 99.31                 | 968.06  | 0.34   | 98.97       | 93268.92 |

Table: Comparison of Chen's PCycle, SGT-PC<sub>SCC</sub>, and Monte Carlo simulation.

Circuits with a \* mark, limit the number of traversal stages. On average, the error of the SGT-PC<sub>SCC</sub> is 0.21%, while the error of the PCycle is 1.03%.

## Outline

Introduction

**Problem Formulation** 

SGT-PC Algorithm

Experiments

Conclusion

#### ► SGT-PC:

- Cover all cycles through a structural graph traversal;
- Within  $O(|V|^2|E|)$  number of statistical sum and max operations.
- Practical Implementation:
  - Decomposition technique: strongly connected components;
  - Heuristic approach: limit the region of graph traversal to allow designers to trade-off accuracy with running time.
- Further work:
  - Reduce the statistical max operation errors;
  - Bound the circuit yield.

## Thank you!

Questions?

Appendix

Table: Comparison on the count of sum and max operations for Chen's PCycle and SGT-PC<sub>SCC</sub>.

| circuit   | PC       | ycle     | SGT-PC <sub>SCC</sub> |        |  |
|-----------|----------|----------|-----------------------|--------|--|
| name      | sum#     | max#     | sum#                  | max#   |  |
| s27       | 2173     | 856      | 765                   | 249    |  |
| s208.1    | 26352    | 16146    | 7235                  | 2076   |  |
| s382      | 102916   | 67148    | 24396                 | 7633   |  |
| s420.1    | 106078   | 72754    | 21036                 | 7538   |  |
| s526      | 116123   | 79674    | 152221                | 75059  |  |
| s832      | 314128   | 200318   | 207288                | 73183  |  |
| s1196     | 459642   | 261392   | 659943                | 202957 |  |
| s1423     | 6823K    | 5478K    | 741K                  | 339K   |  |
| s5378*    | 13900K   | 9193K    | 1849K                 | 512K   |  |
| s13207*   | 88255K   | 52408K   | 540K                  | 103K   |  |
| s13207.1* | 95489K   | 57157K   | 1467K                 | 277K   |  |
| s15850*   | 267978K  | 211626K  | 23694K                | 10540K |  |
| s35932*   | 274623K  | 167203K  | 119737K               | 30157K |  |
| s38417*   | 1571896K | 1278600K | 6976K                 | 2350K  |  |
| s38584*   | 1377417K | 970265K  | 84463K                | 18272K |  |

Circuits with a \* mark, limit the number of traversal stages.