Physical Design Techniques for Optimizing RTA-induced Variations

Yaoguang Wei

Jiang Hu

Frank Liu

Sachin S. Sapatnekar

University of Minnesota Texas A&M University

IBM Austin Research Lab University of Minnesota

Outline

- Background and motivations
- RTA-driven floorplanning
- Dummy polysilicon filling
- Experimental results
- Summary

Rapid thermal annealing (RTA)

- High temperature (e.g., 1200°C)
 - Provides a high level of dopant activation after implantation
- A short period (e.g., 1ms)
 - Restricts dopant diffusion
- Used in contemporary ultra-shallow junction technologies

Temperature-time profile in a laser RTA [Colin, 2008]

Surface temperature variation

- Pattern effect
 - Temperature variation induced by different reflectivity coefficients
 - The reflectivity of exposed shallow trench isolation (STI) substantially lower
 - Density of the exposed STI primarily determines the annealing temperature

coefficients in RTA	
Region	Reflectivity Coefficient
N+ source/drain	0.57
P+ source/drain	0.57
Gate over isolation	0.54
Gate over transistor	0.45
Trench isolation	0.20
.1	

Calculated reflectivity

Impact on performance

STI density vs. circuit parameters

- 20% variation in speed observed [Ahsan, 2006]
- Variations in circuit parameters linearly correlates with exposed STI density
- Reduce RTA variations
 - Achieve an even distribution of exposed STI throughout the layout

RTA-driven floorplanning

Floorplanning can improve the variations in the STI density significantly

Floorplan without RTA optimization

Floorplan with RTA optimization

Dummy polysilicon filling for RTA

 Insert poly dummies to improve RTA temperature uniformity and reduce variations in circuit parameters

Heat diffusion length

 σ is thermal conductivity; c_v is specific heat; ρ is density; t is heat diffusion interaction time [Colin, 2008]

Different annealing temperature observed

- Empirical model [Ahsan, 2006]
 - Spike RTA in 65nm technology
 - − *l*~ 4mm

Temperature variation smoothed by heat diffusion

Effective STI density

- Tessellate the layout to $M \times N$ tiles
 - Side equal to l/10
 - Each tile t_{ij} has local STI density d(i, j) and effective STI density e(i, j)
 - Assume the die is periodically repeated, and then d(i, j) is periodic.
- Local STI density: averaged over the tile

Incrementally compute effective STI density

- Only two rows/columns different between the gating windows of adjacent tiles
- Reuse the previous computation

$$e(i, j) = e(i, j-1) + \frac{D(b_{ij}) - D(a_{i,j-1})}{L^2}$$

where $D(r) = \sum_{t_{pq} \in r} d(p,q)$ provides the sum of local STI density for the tiles in a region *r*.

Time complexity: O(n) for all *n* tiles

Determine the local STI density

- Allow different local STI densities to different subblocks with size $l/10 \times l/10$
- d(i, j) calculated by the STI density averaged over the area of tile t_{ij}

Formulation for RTA-driven floorplanning

- Inputs
 - Circuit blocks, local STI densities of all the subblocks, netlists
- Outputs
 - A legal floorplan
- Objectives
 - Minimize area, wirelength and effective STI density uniformity
- Metrics of the effective STI density uniformity
 - Global variation $R = \max_{\text{all } t_{ij}} (e(i, j)) \min_{\text{all } t_{ij}} (e(i, j))$
 - Local variation $G = \sum_{\text{all } t_{ij}} \left(\left| h_{ij} \right| + \left| v_{ij} \right| \right)$

where $h_{ij}(v_{ij})$ is the horizontal (vertical) gradient of effective STI density of t_{ij}

RTA-driven floorplanning

- Cost function: $C = \overline{A} + \alpha \overline{W} + \beta (\overline{R} + \gamma \overline{G})$ $\overline{A}, \overline{W}, \overline{R}, \overline{G}$: normalized version of area, wirelength, global/local variations in effective STI density
- Adaption of Parquet package [Adya, 2001]
- Two-stage simulated annealing (SA)
- Heuristic
 - Observation
 - A floorplan with larger area contains more dead space
 - Mitigate the variations in STI density
 - Add barriers for accepting a floorplan with better STI uniformity but much worse area

SA 1: optimize only

wirelength and area

Dummy polysilicon filling

- Based on an adaptation of the oxide CMP fill solution [Tian, 2001]
- Linear programming (LP) formulation

Experiment setup for RTA-aware floorplanning

- Platform
 - A 64-bit Linux machine with a 2.6 GHz AMD Opteron 2218 processor and 2GB memory
- Assumptions
 - Assume RTA profile for 65nm technology with *l*=4mm [Ahsan, 2006]
 - STI density of dead space to be 1
 - The space between the dies on the wafer is negligible
- Scaling of the benchmarks
 - Scaled areas from about 7mm \times 7mm to 15mm \times 15mm
- Generate the local STI density for each subblock randomly
- Parameters
 - Default parameters for Parquet
 - For our algorithm, parameters tuned for ami49
 - Run 10 times

Results for RTA-aware floorplanning

- Name our algorithm as pRTA
- Show the results of pRTA normalized to Parquet

Area and wire length of pRTA normalized to Parquet

Results for RTA-aware floorplanning

• Report polysilicon sheet resistance instead of STI density $R_s(i, j) = -0.9267 \times e(i, j) + 1.5223$

Variations in *R*_s of pRTA normalized to Parquet

Circuit

• For xerox and ami33, the maximal gradient in *R_s* is a little larger, since it is not optimized directly in objective.

Topography of R_s

Floorplan without RTA optimization

Floorplan with RTA optimization

• Our algorithm reduces the variations in R_s significantly

Results for RTA-aware floorplanning

Experiment setup for dummy polysilicon filling

- Calculate upper bound for dummy filling
 - Assume minimal STI density after dummy filling is 0.15
 - Then

$$x_{ij}^{a} = \max\left(d^{0}(i, j) - 0.15, 0\right)$$

where $d^{0}(i, j)$ is the initial local STI density before dummy filling

- Choose parameters such as after dummy filling:
 - Global variation in R_s no larger than 1%
 - Maximal gradient for R_s no larger than 0.2%
- Use commercial LP solver ILOG CPLEX
- Use same hardware as before

Topography of *R_s* after dummy filling

Floorplan without RTA optimization

Floorplan with RTA optimization

• The variations in R_s are negligible after dummy filling

Dummy polysilicon filling

- The amount of dummy fill reduced by 24% on average
 - To achieve the same requirements of STI uniformity

Summary

- RTA-induced variations strongly depend on circuit layout patterns
- First solve a floorplanning problem that aims to reduce the RTA variations by evening out the STI density distribution
- Next insert dummy polysilicon fill to further improve the uniformity of the STI density

Thank You!