Gate Delay Estimation in STA under Dynamic Power Supply Noise

<u>T.Okumura</u>^{*}, F.Minami^{*}, K.Shimazaki^{*}, K.Kuwada^{*} and M.Hashimoto^{**}

*Semiconductor Technology Academic Research Center (STARC), **Osaka University

Okumura.takaaki@starc.or.jp

Overview

- Background & Motivation
- Conventional methods to cope w/ noise on timing
 - Guard-banding based on Static IR-Drop Analysis
 - Gate delay estimation considering noise waveform
- Evaluation of conventional estimation method at 45nm
- Proposed method to improve the estimation accuracy
- Evaluation results of the proposed method
- Conclusion

What is Power/Ground Noise?

Power/Ground Noise

- Temporal P/G level fluctuation due to simultaneous signal switching.
 →May cause timing failure.
- So far, guard-banding based on static IR-drop analysis.
- Recently, dynamic voltage drop analysis tools are introduced.
 - Reduce peak voltage drop by proper placement of decoupling cells.

TAR (2010/01/21

Technology Trends

W/ Process technology scaling

2010/01/21

- Current density 1, Wire resistance 1
- Power supply voltage \$\overline\$, Non-linearity of voltage-delay characteristics \$\overline\$
- Noise amplitude unchanged despite technology scaling [A.Mezhiba, IEEE Trans. on VLSI '04]

 \rightarrow Concern about timing failure becomes more serious. \uparrow

Static IR-Drop Analysis and It's Limitation

Express path delay fluctuation as follows

$$\Delta v_i = \frac{1}{T_i - T_{i-1}} \int_{T_{i-1}}^{T_i} \Delta v \, dt$$

$$\Delta D_{path} = \sum_{i=1}^{n} \Delta D_{i} = \sum_{i=1}^{n} \frac{\partial D_{i}}{\partial v} \Delta v_{i}$$

where *n*: # of stages, $\Delta v(t)$: noise waveform, $D_i: i_{th}$ stage delay, T_i : arrival time of i_{th} gate output, $\partial D_i / \partial v: i_{th}$ stage delay sensitivity to voltage.

Approximate the sensitivity by m_{th} order polynomial and assume uniformity.

$$\frac{\partial D_i}{\partial v} = a_{0i} + \sum_{j=1}^m a_{ji} \cdot \Delta v_i^j$$
$$\Delta D_{path} = a_0 \int_{T_0}^{T_n} \Delta v \, dt + O(\Delta v^2)$$

 \rightarrow Delay estimation by static IR-Drop analysis gives a reasonable approximation, only for setup critical path with insignificant sensitivity difference of each stage.

Conventional Gate Delay Estimation Method

- Gate delay estimation considering noise waveform at 180nm node.
 - Based on Eq. DC voltage approach.
 - Classify the fluctuations into following two cases.
 - Stage delay increase in *Current Change Case*
 - Stage delay **decrease** in *Charge Change Case*
- \rightarrow Evaluate at 45nm node and improve the accuracy if needed.

Review of Current Change Case

- Corresponds to rising transition under power supply noise.
- Stage delay increase since charging current becomes less.
- Eq. DC voltage is heuristically determined by averaging the noise between 0%-60% period of output waveform at an ideal voltage.

Review of Charge Change Case

- Corresponds to falling transition under power supply noise.
- Stage delay decreases since output voltage is dropped in prior to the transition.
- Obtain starting voltage from output response to power supply noise.

Experimental circuit

- Use triangular signal as a noise waveform.
- Sweep noise injection time within path timing window to obtain stage delay fluctuations.

Evaluate the computed results against the SPICE reference.

Evaluation of conventional method at 45nm node

Current Change Case: X1, X3

The **tendencies** of stage delay increase differ from the references.

 \rightarrow Need to revise an averaging interval to obtain Eq. DC voltage.

Charge Change Case: X2, X4

2010/01/21

There exists both **delay increase region** as well as decrease region.

Improve the estimation of *Current Change Case*

Conventional method assumes linearity of voltage-delay characteristics and small fluctuation.

Need to consider non-linearity in recent technologies.

 \rightarrow Iteratively find T_i satisfying T_i - T_{i-1} = D_i + Δ D_i.

Improve the estimation of *Charge Change Case*

An example of delay increase in *Charge Change Case*. Delay increase due to NMOS V_{gs} reduction.

- Since PMOS is already OFF, delay increase originates from a temporal NMOS V_{gs} reduction.
- Apply the iterative procedure as well as the *Current Change Case* with **delay sensitivity to gate input voltage** instead of supply voltage dependence.
- The stage delay decrease is estimated before the increase is estimated and both cases are considered.

Why was increase in *Charge Change Case* missed?

Stage delay fluctuation of 10 stages inverter chain at 180nm node.

- Stage delay increase in *Charge Change Case* is negligibly small at 180nm node.
- Emerged since noise amplitude and over-drive voltage $(V_{dd}-V_{th})$ become comparable.

STAR (2010/01/21

Improved estimation results

- The estimations are improved considering following factors.
 - Non-linearity of voltage-delay characteristics.
 - Decrease in over-drive voltage $(V_{dd}-V_{th})$.

Evaluation of proposed method

- Evaluate average error and standard deviation for each randomlygenerated circuit.
- Compare averaging voltage within path delay (setup critical case with static-IR-drop analysis), conventional, and proposed.

Evaluation results

- Delay fluctuation due to noise is 8.2% on average.
- Error is improved to 1.4% by guard-banding of Static IR-Drop.
- Errors of conventional and proposed which consider dynamic noise waveform are 2.0% and 0.61%, respectively.

New estimation factors need to be considered in recent technologies.

Conclusion

Timing estimation based on static IR-drop analysis gives an optimistic results in the cases where,

Short delay path

Significant delay sensitivity difference to voltage of each stage.

- Following factors need to be considered in the recent techs. in addition to the conventional method proposed at 180nm node.
 - Non-linearity of voltage-delay characteristics

Decrease in over-drive voltage.

Errors in experimental circuits are reduced from 8% to 2%.

Thank You

