
Taipei (Taiwan) – January 21st, 2010

Mapping and Scheduling of Parallel C
Applications with Ant Colony Optimization

onto Heterogeneous MPSoCs

Fabrizio Ferrandi, Christian Pilato,
Donatella Sciuto, Antonino Tumeo

Politecnico di Milano – Dip. di Elettronica ed Informazione
{ferrandi,pilato,sciuto,tumeo}@elet.polimi.it

15th Asia and South Pacific
Design Automation Conference

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Outline

 Introduction

 Related Works

 Preliminaries and Motivation

 Proposed Methodology
Design Space Exploration with Ant Colony Optimization

Handling the Design Constraints

 Experimental Results

 Conclusions and Future Works

2

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Introduction

Mapping and scheduling of partitioned applications is
crucial in particular for heterogeneous MPSoCs

Most of existing approaches usually rely on DAGs (i.e., an
acyclic representation

Difficulties to efficiently represent typical constructs in embedded
applications (e.g., partitioned loops or function calls)

 Different design constraints to be considered
limited area for hardware devices, components that cannot spawn,
preempt, migrate or switch threads, …

Ant Colony Optimization (ACO)
promising constructive method to produce very efficient

solutions for the combined problem

3

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Related Works

 [Niemann and Marwedel 1997] Exact solutions for the
combined problem with an ILP formulation on DAGs.

DAGs can be obtained through inlining and unrolling, but it greatly
enlarges the design space and the complexity

 List-based scheduling is usually applied to obtain heuristic
solutions based on priority information

[Beaty 1993], [Grajcar 1999] GAa, TS and SA widely adopted to
explore the best priority list

[Wiantong et al. 2002] The same search methods have been applied
also to the mapping problem, but only on DAGs

 [Wang et al. 2005][Chang et al. 2008] ACO is becoming very
attractive for such problems in recent years

4

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Hierarchical Task Graph

 Given a DAG, delimiting the function regions or the loop
body results in defining a sort of hierarchy into the graph

[Girkar and Polychronopoulos 1992] Hierarchical Task Graph
(HTG): intermediate representation for parallel programs

 An application can be represented by a HTG, where:
Nodes can be classified into:

• Simple: tasks without sub-tasks (i.e., groups instructions to be
sequentially performed)

• Compound: tasks which consist of one or more HTGs,
representing higher level structures, such as subroutines

• Loop: tasks that represent a partitioned loop, whose iteration
body is represented by a HTG itself

Edges represent the dependences among the tasks, annotated with
the amount of data to be transferred

5

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

 Generic architectural template composed of processing and
communication elements. For example:

Target Architecture

ARM

DSP

L
o
c
a
l

M
e
m

o
ry

L
o
c
a
l

M
e
m

o
ry

Local
Memory

PowerPC

CLBs

MPSoC Virtex-4 FX

Shared Memory

S
h
a
re

d
b
u
s

Renewable (e.g., local memories, bandwith) and non-renewable
resources (e.g., hw area) are associated with all the components

6

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Problem Definition

 Job: generic activity (task or communication) to be
completed in order to execute the specification

 Implementation point: combination of latency and
requirements of resources for executing a job on a component

Mapping: assign each job to an admissible implementation
point, respecting the architectural constraints (e.g., the
limited resources of the components)

 Scheduling: determine the order of execution of all the jobs
of the specification in terms of priorities

 Objective: minimize the overall execution time of the
application on the target architecture

7

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Motivation

 Function calls and loops introduce a hierarchy by definition
HTGs maintain this hierarchy, helping to deal with design constraints
(top-level decisions influence low-level decisions)

A depth-first analysis on HTG is very similar to the actual execution
of the application

 Ant Colony Optimization (ACO) limits as much as possible
the generation of unfeasible solutions

Constructive approach, based on depth-first analysis, helps the
handling of the design constraints, specially with hierarchy.

Evaluation of different combination of mapping and scheduling

Stochastic principles guarantee the exploration

Heuristic principles and feed-backs guarantee the exploitation of
good parts of the solutions

8

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Methodology Overview

Input

 Any C application (single source file of multiple source files)
Interfacing with the GNU/GCC compiler (GIMPLE)

OpenMP pragmas to described the partitioning

Custom pragmas (e.g., profiling annotations, mapping suggestions)

 XML file describing the target architecture and the
implementation points

Output

 C code annotated with custom pragmas to represent the
mapping decisions

 Priority table to represent the scheduling decisions

9

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Methodology Overview

Generate HTG

Optimization process with ACO

Parse C source file(s)

Import implementation points

Generate output C file with
pragmas and priority table

Front-end

Design Space
Exploration

Back-end

10

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Design Space Exploration with ACO

Initialize pheromones

Prepare N ants

Compute the set C of candidates

Select job and assign to impl.point

Update set C of candidate

Evaluate design solution

Update pheromones

ACO

Colony

Ant

11

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Stochastic Job Selection

 At each decision point (d), the probability to assign a
candidate j to a proper implementation point i:

 The global heuristic represents the probability at the step d
for the combination i,j to lead to a good solution

 Roulette wheel and extraction of a combination of job and
implementation point (mapping)

 Decision point will correspond to the priority value
if selected early, they have higher priority…

nk

ijdijd

ijdijd

ijd

nknk

p

,

,,,,

,,,,

,,

][][

][][

global heuristic local heuristic

12

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Solution Evaluation

 List-based scheduler based on mapping decisions and
priority values

Different ant decisions correspond in exploring different solutions

 At the same level of the hierarchy, tasks with higher priority
are scheduled before tasks with lower priority

If the task A has higher priority than the task B, A is scheduled before

Since a depth-first analysis is performed, the whole sub-graph
associated with A is scheduled before the one associated with B

If the two sub-graphs do not involve the same processing elements,
resource partitioning is exploited (controlled by the heuristics!)

 Return overall execution time of the application
Feedback to compare different solutions

13

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Handling of Design Constraints

 The implementation point of a task contains information
also about sub-graphs

Useful when decisions at higher level imply decisions at lower level
of the hierarchy (e.g., components that cannot spawn other threads)

 Avoid to allocate tasks on non-renewable resource (e.g.,
FPGA area) if they cannot fit in the available area

The ant does not generate the related probability and the decision
will not be considered

 Constraint violations or unfeasible solutions can be easily
identified

The corresponding decisions are penalized to avoid to be taken again
in the future

14

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Handling of Design Constraints

 Hierarchy information (as a stack) helps in identifying the
candidate processing elements

If preemption and task switching are not supported, it avoids to
allocate tasks to processing elements occupied by higher level tasks

 Limit as much as possible the allocation of tasks that fork
other tasks (e.g., containing function calls) to processing
elements that cannot spawn threads (e.g., FPGA)

However, if allocated, all the sub-graph will be allocated to the same
component (i.e., similar to task inlining)

When task migration is not supported, the decisions made
for a function are replicated for all the instances (i.e., all the
calls to that function)

15

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Experimental Setup

 Target architecture composed of an ARM processor, a
Digital Signal processor and an FPGA that also embeds a
Power Pc processor

It allows to explore both hardware and software solutions

ARM processor is considered as the master that starts (and
concludes) the execution of the applications

Only this processor can be interrupted, but just to manage the stitch
code for the execution of the threads onto the other components, as
well as the synchronizations

Partial dynamic configuration is not supported: tasks can be
allocated to the FPGA as long as they fit into the available area

 Different embedded applications from MiBench suite
manually partitioned with OpenMP pragmas and profiled

16

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Experimental Results

 Ant Colony Optimization: our methodology

 Search methods (Simulated Annealing and Tabu Search)
permutation of the priorities and random changes of the mapping
decisions

 Dynamic scheduling:
scheduling with a FIFO policy and mapping on first available

17

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Conclusions

 Results show that ACO is able to outperform most of the
existing methods

Very fast to reach good solutions with respect to other methods

Able to generate high-quality solutions in real-world applications

 ACO is very attractive for mapping and scheduling of parallel
C applications on heterogeneous MPSoCs

The depth-first approach is more suitable to approach the problem

Limiting the unfeasible solutions, it has better elaboration time
(i.e., it does not get stuck to exit from unfeasible regions)

Handling of design constraints is very simple and efficient

 Extensions to consider different communication models is
straightforward

18

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

Future Work

 Estimation metrics for heterogeneous components based on
machine learning techniques

 Combining information from dynamic profiling improves
the estimation of the task graph performance*

 A fast estimation of the tasks’ annotations and task graph
performance opens new possibilities for automatic
parallelizing compilers

Task transformation methodologies that are aware of the final target
architecture for both parallelization and mapping into a unique loop

* Fabrizio Ferrandi, Marco Lattuada, Christian Pilato, Antonino Tumeo,
“Performance Estimation for Task Graphs Combining Sequential Path
Profiling and Control Dependence Regions”, In Proceedings of
MEMOCODE'2009

19

Christian Pilato – Taipei (Taiwan) – January 21st, 2010

ANY QUESTION?

THANK YOU!
pilato@elet.polimi.it

20

Research partially funded by the European Community’s Sixth
Framework Programme, hArtes project (http://www.hartes.org)

hArteshArtes

hArteshArtes

