

Geometry Variations Analysis of TiO₂ Thin-Film and Spintronic Memristors

M. Hu¹, H. Li¹, Y. Chen², X. Wang³ & R. E. Pino⁴

 ¹ Dept. of ECE, Polytechnic Institute of NYU
 ² Dept. of ECE, University of Pittsburgh
 ³ Seagate Technology LLC
 ⁴ Air Force Research Laboratory, Advanced Computing Miao Hu, January 17, 2011

WHAT IS MEMRISTOR

WHAT IS MEMRISTOR

Memristor is a resistor with memory

•
$$M(t) = \phi(t)/q(t)$$
, unit Ω

Intrinsic state to remember the history

Passive, AC Predicted in 1971, Found in 2008.

PROSPECT OF MEMRISTOR

Memristor features nano-size, non-volatility, reconfigurable

Potential Applications

- High density storage technoloav DRAM 18 Gbits/cm² Memristor 100 Gbits/cm²
- Reconfigurable computation
- Neural network

OUTLINE

Motivation

Memristor examples

- TiO₂ thin-film memristor
- Spintronic memristor
- Memristor model with geometry variations
- Statistical analysis
- Performance analysis

MOTIVATIONS

□Improve fabrication

- Measurement
- Predict margin and actual performance

□More applications

- Multi-level memory: Levels?
- Reconfigurable computation: Accuracy?
- Neural network: Fuzzy operation?

Motivation

Memristor examples

- TiO₂ thin-film memristor
- Spintronic memristor

Memristor model with geometry variations

- □Statistical analysis
- Performance analysis

MEMRISTOR EXAMPLES

\Box TiO₂ thin-film memristor

$$M(a) = a \cdot R_L + (1-a) \cdot R_H$$
$$\frac{da(t)}{dt} = \mu_v \cdot \frac{R_L}{h^2} \cdot \frac{V(t)}{M(a)}$$

MEMRISTOR EXAMPLES

□ TMR based spintronic memristor

DIFFERENCES

- □ Typical
- □ Many differences
- Principles
- Equivalent circuits
- Sizes
- □ Make model a general solution

	Length (<i>L</i>)	Width (<i>z</i>)	Thickness (<i>h</i>)
TiO ₂	50 nm	50 nm	10 nm
Spintronic	200 nm	10 nm	7 nm

Motivation

- Memristor samples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- Memristor model with geometry variations
- □Statistical analysis
- Performance analysis

GEOMETRY VARIATIONS

□ Line Edge Roughness (LER)

- Beyond the capability of analytic model
- The most difficult part
- □ Thickness fluctuation (TF)
 - Follows Gaussian distribution
- □ Random doping (RDD)
 - Not significant, not considered

LER CHARACTERIZATION

□ LER's characteristics*:

- Root Mean Square (RMS)
- Skewness (Sk)
- Kurtosis (Ku)
- Power spectral density (PSD)
- Auto-correlation function (ACF)

*Z. Jiang, "Characterization of Line Edge Roughness and Line Width Roughness of Nano-scale Typical Structures," 2009.

Ku > 3

Ku = 3

Ku < 3

Sk > 0

LER CHARACTERIZATION

*from nano-scale resist pattern fabricated with CABL-9000C EBL system of Crestec. Co. of Japan with the accelerating voltage 30kV

LER SIMULATION RESULTS

LER CHARACTERIZATION

*from nano-scale resist pattern fabricated with CABL-9000C EBL system of Crestec. Co. of Japan with the accelerating voltage 30kV

GEOMETRY VARIATIONS GENERATION FLOW

OUTLINE

Motivation

Memristor examples

- TiO₂ thin-film memristor
- Spintronic memristor
- Memristor model with geometry variations
- Statistical analysis
- Performance analysis

STATISTICAL ANALYSIS

- Compute state of each filament
- Combine them to achieve the overall performance

OUTLINE

Motivation

Memristor examples

- TiO₂ thin-film memristor
- Spintronic memristor
- Memristor model with geometry variations
- Statistical analysis
- Performance analysis

PERFORMANCE ANALYSIS

PERFORMANCE ANALYSIS

- □ Main source of process variation
 - TiO₂ memristor: TF
 - Spintronic memristor: LER
- □ Variation estimation of M:
 - TiO₂ memristor: -36.5% to 24.1%
 - Spintronic memristor: -16.3% to 21.1%
- Signal type does not affects the variation Flux does

Motivation

- Memristor examples
 - TiO₂ thin-film memristor
 - Spintronic memristor
- Memristor model with geometry variations
 Model simplification
 Statistical analysis
 Summary

SUMMARY

- We evaluate the impact of geometry variations quantitatively:
 - TiO2 thin-film and spintronic memristors;
 - Electrical properties of memristors; and
 - Static and memristive parameters.
- A simple LER sample generation algorithm is proposed to speed up the related Monte-Carlo simulations.
- This device modeling methodology can be expended to other materials.
- The process-variation analysis will benefit memristorbased design.
- Model download: http://eeweb.poly.edu/hli/index_files/memristors.htm

Supplementary slides

$\Box \text{ Thin-film memristor}$ $M(a) = a \cdot R_L + (1-a) \cdot R_H$ $\frac{da(t)}{dt} = \mu_v \cdot \frac{R_L}{h^2} \cdot \frac{V(t)}{M(a)}$

$\Box \text{ For spintronic memristor}$ $M(a) = \frac{R_H \cdot R_L}{R_H \cdot a + R_L \cdot (1 - a)}$ $\frac{da(t)}{dt} = \frac{\Gamma_v}{l} \cdot J_{eff}(t), J_{eff} = \begin{cases} J(t) = \frac{V(t)}{M(a) \cdot l \cdot z}, J(t) \ge J_{cr} \\ 0, J(t) < J_{cr} \end{cases}$

RESULTS

TABLE IV. 56 MIN./MAX. OF TIO2 MEMRISTOR PARAMETERS.							
Sinusoidal≁	LER only@		Thickness only@		Overall₽		₽
Voltage ₽	<u>−</u> 3σ₽	+3σ₽	−3σ₽	+3σ₽	−3σ₽	+3σ₽	Ð
$R_{\rm H}$ & $R_{\rm L^{*2}}$	-5.4%	4.1%	-5.5%+	4.8%*	-6.4%	7.3%	₽
$M(\alpha)$	-5.4%	4.1%	-37.1%+	20.8%	36.5%	24.1%	\triangleright
$\alpha(t)$	0.0%	0.0%	-13.3%	27.5%	-14.7%	27.4%	¢
v(a)÷	0.0%	0.0%	-9.3%+	15.6%	-10.4%	16.9‰	¢
<u>i</u> (α)₽	-4.7%	5.7%	-9.3%+	15.7%	-10.7%	17.2‰	Ð
Power 🖓	-4.7%	5.7%	-8.8%+	14.1‰	-10.1%	15.6%	¢

Square wave	LER only@		Thickness only¢		Overall₽		÷
Voltage ₽	−3σ₽	+3σ₽	−3σ₽	+3σ₽	−3σ₽	+3σ₽	ę
$R_{\rm H} \& R_{\rm L^{*^2}}$	-5.3‰	3.7‰	-6.2%	5.2‰	-6.6%+2	6.9%~	ę
$M(\alpha)$	-5.3‰	3.7‰∘	-17.8%	13.2‰	<15.4%	14.4‰	₽
$\alpha(t) \approx$	0.0‰	0.0‰	-12.1%	16.6‰	-13.0%	15.6‰	Þ
ν(α)÷	0.0%	0.0‰	-11.6%	17.7‰	-12.5%	16.7‰	Þ
<u>i</u> (α)+	-4.0‰	5.2‰	-11.7%	17.7‰	-12.6%	17.6‰	Þ
Power @	-4.0‰	5.2‰	-7.7%~	9.8%	-8.5%	10.1‰	ę

RESULTS

. 1

TABLE V. 30 MIN./MAX. OF SPINTRONIC MEMRISTOR PARAMETERS.

Sinusoidal ∉	LER only.		Thickness only₽		Overall₽		Ð
Voltage ₽	−3σ₽	+3σ₽	−3σ₽	+3σ₽	–3σ₽	+3σ₽	Ð
$R_{ m H}$ & $R_{ m L^{e^2}}$	-15.3%	22.9%*	-6.1‰	5.8%~	-16.4%	20.9‰	Ð
$M(\alpha)$ e	-15.1%	23.3‰	-11.0%	11.0‰	6.3%	21.1‰	Þ
$\alpha(t)$	-9.7‰	8.1‰	-8.4‰	9.5‰	-11.8%	8.1‰	ç
v(α)∻	-10.7%	22.1‰	-9.1‰	9.9%⊷	-21.5%	22.5‰	÷
<u>i</u> (α)₽	-18.5%	18.5‰	-8.9‰	10.1‰	-17.7%	17.8‰	¢
Power @	-18.4%	18.6‰	-8.3‰	9.4‰	-17.8%	17.8‰	Ð

Square wave+	LER only.		Thickness only@		Overall₽		÷
Voltage ~	<u>−</u> 3σ₽	+3σ₽	−3σ₽	+3σ₽	−3σ₽	+3σ₽	÷
$R_{\rm H} \& R_{\rm L^{42}}$	-15.8%	22.0%	-5.3‰	5.7‰	-15.9%	24.2%	÷
$M(\alpha)$ +	-15.6%	21.8‰	-8.5%~	9.7‰∘	-17.0%*	25.5%	47
$\alpha(t) \diamond$	-13.1%	13.8‰	-7.5%~	7.7‰∘	-17.2%	16.2‰	÷
$v(\alpha) e$	-16.5%	20.7‰	-10.0%	8.3‰	-20.1%	25.2‰	÷
i(α)↔	-19.5%	17.1‰	-9.0%	9.3‰	-22.1%	20.5‰	÷
Power @	-19.4%	17.1‰	-7.6‰	7.7‰	-20.9%	19.6‰	÷

MODEL SIMPLIFICATION

- Compute state of each filament Combine them to get the overall performance
 - Spintronic memristor:
 - each filament is in either R_{iL} or R_{iH} states (under geometric variation)
 - the whole device can be regarded as serial connection of all the filaments
 - TiO₂ thin-film memristor:
 - each filament is a smaller memristor
 - TiO₂ memristor is the parallel connection of them

LER SIMULATION ALGORITHM

□ We use this main function to mimic LER :

$$\Delta L = L_{\max} \cdot \sin(f \cdot x) + L_{normal} \cdot p$$