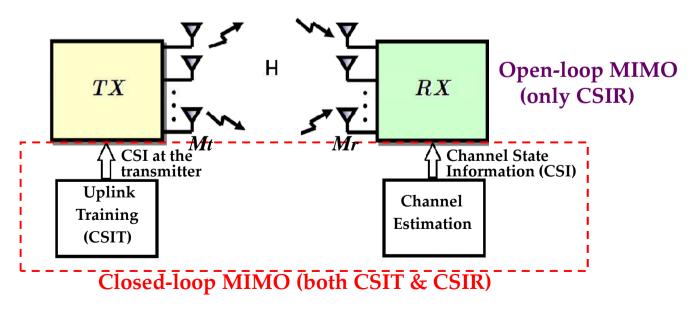
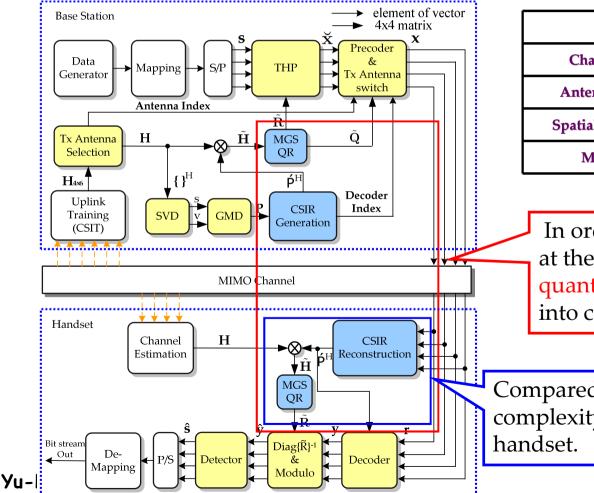


A High Performance Closed-Loop MIMO Communications with Ultra Low Complexity Handset


Yu-Han Yuan, Wei-Ming Chen and Hsi-Pin Ma

Department of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan

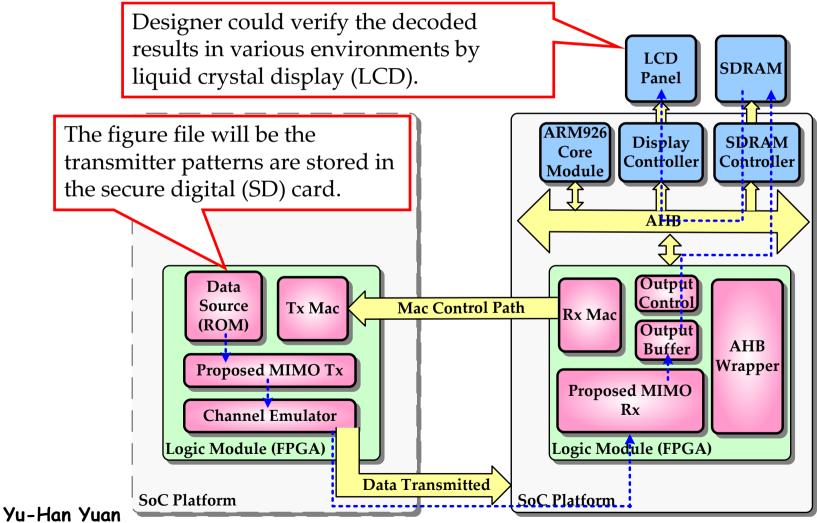
Motivation


- Joint Transceiver Design for Closed-Loop MIMO
 - TX can take advantage of CSI to apply the advanced processing to enhance the performance of communications and potentially simplify the receiver architecture.
 - Target
 - High performance
 - Low complexity handset

Architecture of the Proposed Transceiver

• An efficient and practicable MIMO transceiver in which transmitter antenna selection is applied to geometric mean decomposition (GMD) which is combined with Tomlinson-Harashima Precoder (THP) in TDD system is implemented.

Mode	TDD
Channel Model	i.i.d. Rayleigh flat fading
Antenna Selection	4 Tx ant. from 6 Tx ant.
Spatial Multiplexing	4x4
Modulation	QPSK, 16QAM, 64QAM


In order to save GMD computation at the handset, we take the decoder quantization and reconstruction into consideration.

Compared with the GMD scheme, the complexity is 60% reduction at the handset.

Transmission Flow

• A MIMO joint transceiver is implemented on a SoC platform which is realized to do the hardware/software (HW/SW) co-verification strategy to debug the proposed architecture.

Implementation Results

Photograph of the

Specification

Application	-WLAN -DSL Systems	
Mode	TDD	
Channel Condition	Rayleigh i.i.d. fading MIMO channel & Quasi-stationary	
Tx. Antenna Selection	4 Tx ant. from 6 Tx ant.	
Support Modulation Type	QPSK 16-QAM 64-QAM	
Code book Size	Unit 4-vector with 64 entries	 [
Maximum clock freq.	10 MHz (SoC Platform)	
Maximum throughput	16 Mbps (SoC Platform)	
Equivalent Gate Count (Tx/Rx)	276,768 / 109,101	

omparisoi

Complex

Addition

7

33

90

190

345

567

Complex

Multiplication

67

183

354

586

885

1257

308

512

775

1102

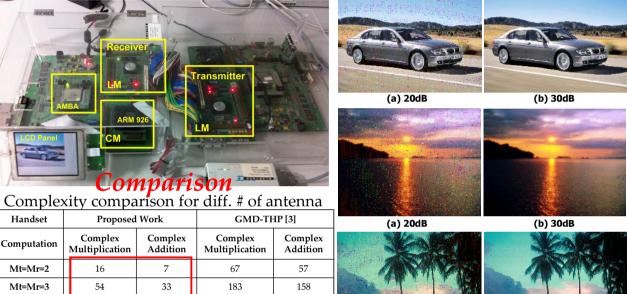
Proposed Work

Complex

Multiplication

16

54


128

250

432

686

Emulation Results

(a) 20dB

Features

- An efficient and practicable MIMO transceiver in which transmitter antenna selection is applied to GMD-THP algorithm in TDD system is implemented.
- The proposed work can achieve about 7dB SNR improvement over the open-loop VBLAST counterparts even about 2dB SNR better than ML at BER=10⁻².

Handset

Computation

Mt=Mr=2

Mt=Mr=3

Mt=Mr=4

Mt=Mr=5

Mt=Mr=6

Mt=Mr=7

- Compared with the GMD-THP scheme, the complexity is 60% reduction at the handset.
- Full implementation and practical SoC platform emulation (hardware/software coverification).

Yu-Han Yuan

(b) 30dB