A 58-63.6GHz Quadrature PLL Frequency Synthesizer Using Dual-Injection Technique

Ahmed Musa, Rui Murakami, Takahiro Sato, Win Chaivipas, Kenichi Okada, Akira Matsuzawa

Tokyo Institute of Technology, Japan
60GHz Communications

- 9 GHz unlicensed band at 60 GHz
- Several Gbps transfer rate speed
 - 3.5Gbps/ch (QPSK)
 - 7Gbps/ch (16QAM)

<table>
<thead>
<tr>
<th>Channel Number</th>
<th>Low Freq. (GHz)</th>
<th>Center Freq. (GHz)</th>
<th>High Freq. (GHz)</th>
<th>Nyquist BW (GHz)</th>
<th>Roll-Off Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>57.24</td>
<td>58.32</td>
<td>59.40</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td>A2</td>
<td>59.40</td>
<td>60.48</td>
<td>61.56</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td>A3</td>
<td>61.56</td>
<td>62.64</td>
<td>63.72</td>
<td>1.76</td>
<td>0.25</td>
</tr>
<tr>
<td>A4</td>
<td>63.72</td>
<td>64.80</td>
<td>65.88</td>
<td>1.76</td>
<td>0.25</td>
</tr>
</tbody>
</table>

from IEEE802.15.3c-2009
Transceiver Architecture

• Direct conversion architecture for single chip implementation
 – Small area
 – Lower power consumption
Transceiver Architecture

• Direct conversion architecture for single chip implementation
 – Small area
 – Lower power consumption

Low phase noise -110dBc/Hz@10MHz

Wide tuning 57-66GHz

Low I/Q mismatch

Low power

Single chip implementation

LO Topologies

- **60GHz QPLL**
 - 9GHz tuning range
 - Low Q for capacitors
 - Poor Phase Noise

- **30GHz PLL**
 - 2\(^{nd}\) harmonic is utilized
 - Polyphase filter is used
 - High power consumption
 - I/Q mismatch
Proposed Architecture

• 20GHz PLL + Injection Locked Oscillator
 • Good tradeoff between phase noise & locking range
 • Tail feedback VCO [2]
 • Proposed dual Injection ILO

20GHz OSC 60GHz ILO

• 21dB improvement in phase noise (-96dBc/Hz@1MHz)
• 7Gbps wireless transfer rate using (16QAM)