A 32Gbps Low Propagation Delay 4x4 Switch IC for Feedback-Based System in 0.13 μm CMOS Technology

Yu-Hao Hsu, Yang-Syu Lin, Ching-Te Chiu, Jen-Ming Wu, Shuo-Hung Hsu, Fan-Ta Chen, Min-Sheng Kao, Wei-Chih Lai, and YarSun Hsu

National Tsing Hua University, Taiwan
Network Router/Switch

- A router/switch is a network element with multiple input ports and output ports.
- $N \times N$ switch: N input ports and N output ports
- Basic functions:
 - table lookup
 - message copying

![Diagram of a network router/switch]

- Input ports: 1, 2, 3, 4
- Output ports: 1, 2, 3, 4

- 4×4 switch
- Local host, Server, Router, Internet
- HTTP, TCP, IP, Ether
Output Switch and Input Switch

- **Output-buffered switch:**
 - Feature: common shared memory, speedup of N requirement
 - Problem: memory access limitation
 - Solution: parallel-buffered switch

- **Input-buffered switch:**
 - Feature: one buffer per input port
 - Problem: head-of-line blocking, 58% throughput
 - Solution: VOQ (virtual output queuing) technique

\[
\text{Memory} \\
\begin{array}{c}
\text{IN} \\
\text{Data Rate R} \\
\text{N users} \\
\text{OUT}
\end{array}
\]

\[
2 \cdot N \cdot R
\]
Load balanced Birkhoff-von Neumann Switch Architecture

- **Features:**
 - 100% throughput
 - scalability: $O(1)$, periodic, deterministic
 - lower average delay in heavy or burst traffic
 - better buffer utilization
 - lower hardware complexity

- **Problem:** out-of-sequence issue
Feedback-based System

Symmetric TDM Patterns

Motivation: switching packet directly in RF domain

• Low propagation delay in feedback system
Proposed Low Propagation Delay 4x4 Switch Architecture and Measurement Results

Overall Architecture

Pattern Generator

2x2 Switch

2x2 Switch

Pattern Generator

Divider N=2

Phase Sifter

Output Buffer

Die Photo

One of the Output Waveform

Measurement Eye Diagrams:

Jitter_{p-p} = 20ps @8Gbps.