An Adaptively Biased Low-Dropout Regulator with Transient Enhancement

Chenchang Zhan and Wing-Hung Ki

Integrated Power Electronics Laboratory The Hong Kong University of Science and Technology

ASP-DAC, Yokohama, Jan. 26th, 2011

Motivation

- Low-Dropout Regulators (LDRs) are key blocks in SoC
- They are desired / required to have features:
 - Output-capacitor-free; chip-area efficient
 - Low quiescent current; high current efficiency
 - Low-voltage high-precision regulation
 - Fast transient response; high PSR

Can we achieve these features simultaneously?

Proposed Design: ABTE LDR

- C_{PP} stands for on-chip de-coupling / parasitic capacitance
- Multi-stage EA provides high-precision regulation
- Simple current mirror (SCM) implements adaptive biasing
- Transient enhancement block provides fast discharging of $M_{\rm P}$ gate when $I_{\rm load}$ steps up from small to large

ABTE LDR: Schematic

- Miller compensation and Q-reduction ($C_M \& C_Q$)
- Fixed biasing: M_{FB}; Adaptive biasing: M_{AB}; SCM: M_{S1}—M_{S4}
- Transient enhancement: M_{T_1} — M_{T_9} + C_T : when V_{OUT} shows large undershoot, V_{T_1} and V_{T_2} decreases \rightarrow large I_{T_9} to pull down V_{GP} quickly \rightarrow reduce undershoot of V_{OUT}

Measurement Results

Load Transient

Welcome to the Poster!