
Template-based Memory Access
Engine for Accelerators in SoCs

Bin Li, Zhen Fang, and Ravi Iyer

Intel Corporation

ASP-DAC 2011

Outline

Motivation
Template-based Memory Access Engine
Evaluations
Conclusions

Outline

Motivation
Template-based Memory Access Engine
Evaluations
Conclusions

Systems-on-Chip Architectures

Today’s SoC Architecture
One or two cores

Employs caches to capture working set
Several accelerators

Each accelerator has its local buffer

Future SoC Architectures

Increasing #. power-efficient small cores
Large number of hardware accelerators
Several applications run simultaneously

Core

Cache

Interconnect

Memory
controller

Speech
Recongition

Image
Recongition

Core

Cache

Graphic

VideoAudio
Core

Cache

Interconnect

Memory
controllerDSP

Speech
Recongition

Image
Recongition

Core

Cache

Contention for Memory Access

Applications running simultaneous
Accelerator’s traffic arrives at memory in burst/stream
Memory reacts on demand
Increased memory access latency and jitter
Memory access latency unpredictable

Hide memory access latency is the key to
performance improvement

Current Approaches

Software based prefetch
Programmer insert prefetch instructions or compiler detection
Cannot issue prefetch instructions sufficiently far in advance

Hardware based prefetch
Hardware detects access pattern and perform prefetch
No direct knowledge of future memory references

Direct Memory Access (DMA)
Coordinate data movement between memory and
accelerator’s local buffer
No global view of the contention

Accelerators work on one or two tasks
Memory access pattern known at design time
Many accelerators have common memory access
patterns
Propose a template-based memory access engine
(MAE) for accelerators

Accelerator Memory Access Characteristics

Outline

Motivation
Template-based Memory Access Engine
Evaluations
Conclusions

Target: Accelerators
MAE locates next to memory controller
Provides common memory access templates for
accelerators
Accelerator utilizes MAE to prefetch data from off-
chip memory to on-chip buffers

Template-based Memory Access Engine

Streaming
e.g., video post processors, display
controllers

Common Memory Access Patterns

4 4

4 4

4

4

4 4

Strided
e.g., matrix multiplication

Complex
Regular but complex
e.g., image recognition

Linked-list
e.g., network interface controller (NIC)

Common Memory Access Patterns (continued)

payload
addr
size

payload
addr
size

payload
addr
size

Header
descriptor

Common Memory Access Patterns (continued)

Indirect array access
e.g., speech recognition,
image processing

Gather
Reads from non-contiguous locations
e.g., vector execution

Template Descriptors

Template Descriptors in MAE
Streaming
Strided
Complex
Linked-list
Indirect array
Gather

Example:

Memory Access Engine Architecture

Memory
Command
Generator

Read/Prefetch Commands from Acclerators

Prefetch
request
queue

Read Request to
Memory Controller Data from Memory

Prefetch
block
queue

Read commands

Entry ID PF tpl. ID Content

Scheduler

Prefetch template descriptor table

Read
request
queue

Read
block
queue

Prefetch commands

Active Buffer Controller

Prefetch Buffer

SRAM Buffer

Buf. ID

Memory access classification for accelerators:
Data read with a known pattern
Data read w/o a pattern
Write access

Memory Access Engine Usage

MAE services data read access with known patterns
only

For data read w/o a pattern and data write,
accelerator sends requests to the memory controller
directly

Memory Access Flows

1st step:
Accelerator sends
prefetch request

to MAE

2nd step: MAE
automatically issues

read requests to
mem. ctrl. based on

the template

3rd step: Accelerator
sends read request to

MAE, fetch data
from buffer directly

Read access with known patterns

Core

Cache

Interconnect

Memory
controller

Core

Cache

MAE
Template

based
prefetcher

Prefetch
buffer

Memory Access Flows

Read from
memory
directly

Read access w/o a pattern

Core

Cache

Interconnect

Memory
controller

Core

Cache

MAE
Template

based
prefetcher

Prefetch
buffer

Memory Access Flows

Write to
memory
directly

Write access

Outline

Motivation
Template-based Memory Access Engine
Evaluations
Conclusions

Experimental Setup

Configurations:
Cores: 1GHz low power

Workloads: SPEC CPU 2000 (art, mcf)
NoC: 3 x 3 mesh NoC, X-Y routing

Router: 3 VCs, 5 buf/VC, 4 router
pipelines

Memory:
bandwidth: 3.2GB/s maximum
bandwidth
Access latency: 100 core clocks

Accelerators:
NIC, Hessian, Match, AES, Matrix

MAE:
Prefetch buffer: 32KB
Queue size: 8

Execution Time Comparison

Local DMA: as num.
applications increase,

execution time increases
MAE: reduces
execution time

Memory Access Latency and Jitter Comparison

AMAL: average memory access latency

Local DMA: AMAL
and jitter increases

rapidly
MAE: AMAL and

jitter reduced

Outline

Motivation
Template-based Memory Access Engine
Evaluations
Conclusions

Conclusions

Accelerators exhibit common memory access patterns
Identity simple to complex memory access patterns

Propose template-based MAE for accelerators
Accelerator sends simple prefetch command to MAE
MAE automatically fetches data to on-chip buffer
MAE has a global view of requests
Improves accelerator performance
Simplifies accelerator design
Effective for future SoC architectures

Thank you!

	Template-based Memory Access Engine for Accelerators in SoCs
	Outline
	Outline
	Systems-on-Chip Architectures
	Future SoC Architectures
	Contention for Memory Access
	Current Approaches
	Accelerator Memory Access Characteristics
	Outline
	Template-based Memory Access Engine
	Common Memory Access Patterns
	Common Memory Access Patterns (continued)
	Common Memory Access Patterns (continued)
	Template Descriptors
	Memory Access Engine Architecture
	Memory Access Engine Usage
	Memory Access Flows
	Memory Access Flows
	Memory Access Flows
	Outline
	Experimental Setup
	Execution Time Comparison
	Memory Access Latency and Jitter Comparison
	Outline
	Conclusions

