
Minimizing Buffer Requirements for
Throughput Constrained Parallel

Execution of Synchronous Dataflow
Graph

Seoul National University, CAPLABT

Tae-ho Shin1, Hyunok Oh2 and Soonhoi Ha1

1: Seoul National University

2: Hanyang University

Contents

2

 Introduction
 Motivational Example

 Related Work

 Problem Definition

 Proposed Solution
 Overall Structure

 Proposed Dynamic Scheduling Method

 Experiments

 Conclusion

Motivational Example

3

 A (Simple) SDF Graph
 node: computation block

 arc: FIFO queue

 Sample rate: number of
samples consumed or
produced per node firing

 A node is fireable only after it has enough number of
samples on all input arcs

 A mapping instance
(nodes to processors)

2132A B C

Proc
0

Proc
1

Proc
2

Node A B C

Mapped Processor 1 2 3

Execution Time 1 2 2

Arc buffer size affects the throughput!

4

 Scheduling result when the buffer size of arc AB is 4

 Scheduling result when the buffer size of arc AB is 6

2132A B C

Proc
0

Proc
1

Proc
2

Node A B C

Mapped Processor 1 2 3

Execution Time 1 2 2

A A

B B

A

C

A A A

B B

C

Unfolding affects the throughput!

5

 Motivational Example 2

A

B C

D

E
1 1

1 1 1
1

1
1 2

2

A

B

D

C

E

A

B

D

C

EA

B C

D E

Node A B C D E

Mapped Processor 2 1 1 2 2

Execution Time 1 1 1 1 1

<Scheduling result without unfolding>

<Scheduling result with 2-unfolding>

Related Work

6

 Related Work

 All previous work assumed “static scheduling”

 The optimization problem is NP-hard

 Extensive work has been performed recently – prove
that the problem becomes practically important

Scheduling

Policy

Fixed Number of

Processors

Unlimited Number

of Processors

Static scheduling

Pipeline, max-plus, model

checking, scenario based,

etc.

Without unfolding

With unfolding

Dynamic

Scheduling
Proposed Method N/A

Dynamic vs Static scheduling

7

 Pros of dynamic scheduling over static
scheduling
 Can get the effect of unfolding naturally

 Easy to represent of schedule and uses less memory
space

 May improve system performance when the
execution times are vary at run-time

 But we need
 Run-time system to schedule the nodes dynamically

 Priority assignment to the mapped nodes

Problem Definition

8

 Input
 Target Architecture: A heterogeneous MPSoC

 Input Information
 An SDF graph with given execution time of nodes

 A given static mapping of nodes to processors

 A known dynamic scheduling policy on each processor

 Constraints: Throughput

 Problem
 Minimize the total buffer requirement and determine the

buffer size of all arcs

 (Determine the priority of the mapped nodes)

Proposed Solution

9

 Overall Optimization Flow

JGAP

chromosome
(decide size of
each buffer)

fitness function

update

Generate SDF graph
(without size of each buffer)

Schedule

feasible?

Fitness value = 0
fitness value =

1 / sum of buffer size

yes no

GA-based Heuristic

10

 JGAP package is used for current implementation
 The size of each buffer size is encoded into chromosome and

GA evaluate chromosome by scheduling dynamically with

encoded buffer size information

 Fitness value of chromosome is determined by feasibility of

scheduling result based on given throughput constraint

 Optimization process is repeated until fitness value converges

or pre-defined upper bound of generation steps

buffer 1 size buffer 2 size buffer n size...

gene

chromosome

Feasibility Analysis

11

 Simulate the system in which each processor
performs dynamic scheduling of the mapped
nodes for each candidate solution (given buffer
sizes of all arcs)
 All mapped nodes are assigned priorities

 We consider the communication overhead between
processors as well as execution time variation of the
nodes

 We repeat the execution of the graph until we obtain
the throughput

Throughput Computation

12

 Approximate throughput
 Since there is no guarantee that the same scheduling

pattern will be repeated in dynamic scheduling, the
following equation is defined to calculate throughput
in dynamic scheduling

 If the number of iterations are increased to infinite,
the value of equation converges to specific value and
it can be considered as throughput

 In most case, after 10 iterations the value converges

sinterationn finish totime
)(lim

n
GT

n

Priority Assignment

13

 Proposed heuristic
 We assign a different priority of each invocation for a

same node

 To set priority to each node invocation, calculate “as
late as possible(ALAP)” scheduling time to sink node
as following

 P(Nlast) = Ex(N) + max{P(K1)}

where node K is in {successors of node N}

 P(Nk) = P(Nlast) + (rep(N) – k) * Ex(N)

 Optimal assignment is left as a future work

Experimental Results

14

 Comparison of total buffer size with an optimal solution
in [14]

3

4

5

6

7

8

5 7 9 11

1
/T

h
ro

u
h

g
p

u
t

Total Buffer Size

[14]

Proposed

2132A B C

Proc
0

Proc
1

Proc
2

Node A B C

Mapped Processor 1 2 3

Execution Time 1 2 2

Comparison with a pipelined method

15

 Pipelining is a popular way of throughput improvement

 But pipelining needs pipeline buffers.

 Paper [11] finds an sub-optimal pipelining for an SDF
graph without considering unfolding

Throughput Total buffer size

[11] 1/3 8

Proposed Method 1/3 6

Scalability of the proposed technique

16

 Elapsed time with various input sets

of

instances

of

processors

of

edges

Throughput

constraints

Elapsed

time

30 3

5
1 / 100 190 s

1 / 44 192 s

32
1 / 100 134 s

1 / 34 133 s

100 7

20
1 / 100 1052 s

1 / 75 1059 s

54
1 / 100 588 s

1 / 79 665 s

Conclusion

17

 We propose a static mapping and dynamic
scheduling method that has several benefits over
static scheduling methods.

 The proposed GA_based algorithm minimizes
the buffer requirement under the throughput
constraints.

 A simple heuristic for priority assignment is also
proposed – produces good results

 The proposed technique is scalable, while
producing near-optimal results.

Future work

18

 Find an optimal mapping

 Find an optimal priority assignment scheme

Thank you!

