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Introduction Motivation

The heat is on!

Figure: Rise in on-chip power density. [Source: Intel]

On-chip power density is rising exponentially

Direct impact: high on-chip temperatures

Thermal management now a first-class design problem
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Introduction Motivation

Dynamic Thermal Management (DTM)

Research shows that hardware cooling solutions are not sufficient

Need to completement them with software-based run-time techniques

Broad term for such techniques: Dynamic Thermal Management (DTM)

Examples:

Dynamic Voltage Frequency Scaling (DVFS)
Clock-gating
Task migration
Architecture specific throttling
I-cache toggling
...

But, when do we trigger these controls?
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Introduction Motivation

Trigerring DTM

Natural choice: Read thermal sensor, trigger DTM if necessary

Responding to sensor readings is reactive in nature

Existing research confirms the intuitive idea: “Predictive trigerring greatly

out-performs naive reactive trigerring”

What are the requirements of a good predictive trigger?
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Introduction Motivation

Requirements of predictive triggers

For false positives, we would have performance loss. For false negatives we can have

thermal emergency. Thus, a basic requirement is accuracy

Prediction is during run-time. Hence, on-chip resources must be devoted. Thus,

computational efficiency is highly desirable

If prediction engine is modelled at run-time, then we can have errors due to (a) VLSI

process variations, (b) thermal modelling errors. Thus, run-time adaptability is

required, if these errors are indeed significant
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Trade-off Space Different thermal triggers

Qualitative Trade-Off Space

Let us try and qualitatively compare existing techniques to predict on-chip temperatures.

The different classes are

1 Design-time analytical models

2 Software simulators

3 Model predictive control

4 Workload predictive triggers

5 Hardware simulators
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Trade-off Space Qualitative comparison of thermal triggers

Comparison table

Predictive technique Accuracy Efficiency Adaptability

Design-time analytical models ,,, ,,, ,
Software simulators ,, , ,,
Model predictive control ,,, , ,,
Workload predictive triggers , ,, ,,
Hardware simulators ,, ,,, ,,,

Adaptability

Efficiency

Accuracy

+

u

r

b
+

u Design-Time Analytical Methods

+Software Simulators
r Model Predictive Control
b Workload Predictive Triggers

+Hardware Simulators
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Neural-Network-Based Thermal Simulator Compact thermal model

Basics of heat transfer

Heat transfer represented using the compact thermal model

(a) (b)

Fig. 1. Compact modelling of a chip

block represented by a node with resistances to its adjacent
layers and capacitances to ground (Fig. 1(b)). The Cu layer
additionally is connected through interface resistances to the
ambient. This network is excited by a set of current sources
which correspond to power consumption in the actual chip.
As per the duality between thermal and electrical systems, the
node potentials obtained in the electrical network correspond
to temperatures on the chip. Thermal simulation is performed
by transient analysis of such a network by solving a set of
first order differential equations:

Gx(t) + Cẋ(t) = i(t) (1)
where G and C are matrices that represent the resistance and
capacitance networks, respectively, x(t) is the vector of node
potentials and i(t) is the set of injected source currents. These
are most commonly solved by discretizing the time domain
and iteratively solving for x(t), represented in general as

x(tn+1) = x(tn) + hDn (2)
where h = tn+1 − tn and Dn is an iteration-dependent
differential operator specific to the method employed. For all
such methods, the inaccuracy rises on increasing h and thus
for accurate simulations the time step h is chosen to be small
enough: in the order of a hundreds of µs [8].

B. Linear Time Invariant Approximation

The thermal resistance of silicon is a function of tempera-
ture, and thus G in Eqn. 1 is a function of x(t). If we, however,
relax this dependence - an approximation which we evaluate
with experimental results (cf. Section V.C) - then a dynamical
system with state equations given by Eqn. 1 represents a
Linear Time Invariant (LTI) system, for the duration of time
when i(t) remains constant. Changes in i(t) are required at
times of updated power consumption numbers. Let the power
consumption values be updated such that they remain constant
from t = tn to t = tn + ∆t = tn+1. Then, the theory of LTI
systems states that, there exist matrices A and B such that

x(tn+1) = Ax(tn) + Bi(tn) (3)
Thus, for a given circuit, neglecting the temperature depen-
dence of resistance parameters, if we identify the matrices A
and B, we can simulate the equivalent electrical network at
time-steps of ∆t. For MPSoCs, power values are updated once
every hundreds of milliseconds. Hence ∆t can be 2-3 orders of
magnitude larger than h that differential equations are bounded
by. Matrices A and B can be systematically identified using
step-input responses. But this method would be cumbersome
for large networks, which compact model based networks

(a) (b)

Fig. 2. Modelling thermal simulation as a Neural Network

typically are. We propose to use NNs to learn the matrices
and subsequently perform the operations of Eqn. 3.

C. Neural Network Solution

Neural networks are Multi-Input Multi-Output (MIMO)
function approximators, which can be used to learn an un-
known functional dependence between inputs and outputs
using test data. Given our specific application of thermal
simulation of MPSoCs, we restrict ourselves to a discussion
of linear NNs: with a single layer and without any activation
function. Consider an example 3-input 2-output linear neural
network shown in Fig. 2(a). Two operators are shown: the
arrows are multipliers with multiplicands shown as weights
and the circles are summers. Thus, output yi is given by

yi =
�

j

wijxj , (4)

where w terms represent the weights. By learning appropriate
weight terms, any linear dependence between the outputs and
inputs can be expressed by such a NN.

Given the linear nature of Eqn. 3, we can similarly have a
NN with inputs {x(tn), i(tn)} and outputs x(tn+1) (Fig. 2(b)).
The weights would then appropriately model the matrices A
and B. Test data for training the NN can be easily obtained
from actual chip measurements or accurate computations per-
formed by a simulator like HotSpot. While the learnt NN
simulates ∆t into the future in one pass through the network,
it would still retain the accuracy of the method that was used
to train it. Thus, A and B can be learnt without deriving them
directly from the compact model parameters.

IV. VLSI IMPLEMENTATION

The advantages provided by the NN solution to thermal
simulation are heightened by the possibility of implementing
them natively in VLSI systems. In this section, we discuss an
implementation of the NN system, specific to our application.

Consider a NN, where the temperature of every node of the
compact model is computed by a separate neuron subcircuit so
as to perform a fully parallel computation. The complexity of
the interconnection required between these neurons is O(N2),
where N is the number of blocks into which the chip has
been divided. This can be prohibitively large, given the large
size of compact models. We thus, propose a relaxation of the
fully connected NN to one where interconnection is retained
between output and input nodes only if the corresponding
grid blocks are within a given physical distance, say r, in the
chip. This approximation, though natural given the diffusive
nature of heat flow, is likely to add to the inaccuracy of the

Temperature given by the differential equation

GT(t) + C
dT

dt
= P(t) (1)

The above is a linear time invariant LTI system that can be expressed as

T(tn+1) = AT(tn) + BP(tn) (2)
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Neural-Network-Based Thermal Simulator Thermal simulation with NNs

Neural-Network representation

A linear neural network mimics the behavior of a system which transforms a vector

of inputs x to a vector of outputs y = f(x) = wx+ b

The thermal LTI system can be simulated with a neural network (NN)

Neural-Networks-based On-Chip Thermal Simulator Pratyush Kumar, David Atienza, ESL, EPFL

Our Solution (3/3)
Neural Networks

10

• We showed that thermal 
simulation is equivalent to 
T(t + ∆t) = AT(t) + BP(t), 
for unknown A and B. 

• We can

‣ learn A and B using NNs, 
and

‣ compute above equation 
using NNs

A linear neural network used as 
a thermal simulator

!

!

!!!

!!!
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The matricesA and B can be learnt by using off-line measurements or design

models
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Neural-Network-Based Thermal Simulator Thermal simulation with NNs

Advantages of Neural-Network-Based Thermal Simulator

Implementation

Linear NN requires only two-quadrant multipliers and summers. Both can be

implemented natively using analog CMOS circuits

Design overhead

Implementing a linear NN requires only tens of hundreds of transistors - a negligible

fraction of the total transistor count

Computation speed

An iteration of the LTI model takes only a few gate delays - negligible compared to

any software implementation
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Practical extensions to NN simulator Arbitarary sensor layout

Generalized NN configuration

Ideally we should have current temperature of all cells of the compact model

But only few thermal sensors are fabricated on-chip in an arbitrary layout

We need to thus find reduced versions of matricesA and B such that

Ts(tn+1) = ArTs(tn) + BrP(tn)

where Ts is the temperature of the points covered by sensors

This requires us to perform model order reduction (MOR)

For linear NN, MOR is performed automatically when training with only Ts

Thus, independent of the number or layout of sensors the NN can be trained and

then simulated

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 15 / 27



Practical extensions to NN simulator Arbitarary sensor layout

Generalized NN configuration

Ideally we should have current temperature of all cells of the compact model

But only few thermal sensors are fabricated on-chip in an arbitrary layout

We need to thus find reduced versions of matricesA and B such that

Ts(tn+1) = ArTs(tn) + BrP(tn)

where Ts is the temperature of the points covered by sensors

This requires us to perform model order reduction (MOR)

For linear NN, MOR is performed automatically when training with only Ts

Thus, independent of the number or layout of sensors the NN can be trained and

then simulated

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 15 / 27



Practical extensions to NN simulator Arbitarary sensor layout

Generalized NN configuration

Ideally we should have current temperature of all cells of the compact model

But only few thermal sensors are fabricated on-chip in an arbitrary layout

We need to thus find reduced versions of matricesA and B such that

Ts(tn+1) = ArTs(tn) + BrP(tn)

where Ts is the temperature of the points covered by sensors

This requires us to perform model order reduction (MOR)

For linear NN, MOR is performed automatically when training with only Ts

Thus, independent of the number or layout of sensors the NN can be trained and

then simulated

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 15 / 27



Practical extensions to NN simulator Arbitarary sensor layout

Generalized NN configuration

Ideally we should have current temperature of all cells of the compact model

But only few thermal sensors are fabricated on-chip in an arbitrary layout

We need to thus find reduced versions of matricesA and B such that

Ts(tn+1) = ArTs(tn) + BrP(tn)

where Ts is the temperature of the points covered by sensors

This requires us to perform model order reduction (MOR)

For linear NN, MOR is performed automatically when training with only Ts

Thus, independent of the number or layout of sensors the NN can be trained and

then simulated

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 15 / 27



Practical extensions to NN simulator Arbitarary sensor layout

Generalized NN configuration

Ideally we should have current temperature of all cells of the compact model

But only few thermal sensors are fabricated on-chip in an arbitrary layout

We need to thus find reduced versions of matricesA and B such that

Ts(tn+1) = ArTs(tn) + BrP(tn)

where Ts is the temperature of the points covered by sensors

This requires us to perform model order reduction (MOR)

For linear NN, MOR is performed automatically when training with only Ts

Thus, independent of the number or layout of sensors the NN can be trained and

then simulated

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 15 / 27



Practical extensions to NN simulator Arbitarary sensor layout

Generalized NN configuration

Ideally we should have current temperature of all cells of the compact model

But only few thermal sensors are fabricated on-chip in an arbitrary layout

We need to thus find reduced versions of matricesA and B such that

Ts(tn+1) = ArTs(tn) + BrP(tn)

where Ts is the temperature of the points covered by sensors

This requires us to perform model order reduction (MOR)

For linear NN, MOR is performed automatically when training with only Ts

Thus, independent of the number or layout of sensors the NN can be trained and

then simulated
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Practical extensions to NN simulator Run-time Adaptability

Run-time Adaptable Neural Network

So far, we have discussed training the NN at design time

NNs can be refined during run-time using backpropagation learning methods

∆wij ← ∆wij + (y∗i − yi)yj

wij ← wij + ∆wij

wherew are weight terms, y∗ is the correct output and y is the computed output

What is the hardware implications for on-line refinement?

1. Every weight term must be programmably stored in say b bits

2. Run-time learning not as accurate as off-line learning because of quantization of

weight terms to b bits
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Experimental Results Benchmarking system

Target system

8-core Sun UltraSPARC T1 (Niagara)

chip with accurate floorplan

Accurate thermal properties of the chip

derived by an earlier study

Accurate power numbers derived by

benchmark applications running on

the same chip

Neural-Networks-based On-Chip Thermal Simulator Pratyush Kumar, David Atienza, ESL, EPFL

Experiments (1/3)
System and Benchmarks

• 8-core Sun® Ultrasparc 
Niagara T1 chip with 
accurate floorplan and 
thermal properties

• Accurate power numbers 
obtained from benchmarks 
executing on same chip

• Comparison against fourth-
order Runge Kutta simulator 
(similar to HotSpot) with a 
small time-step

14
(a) (b)

Fig. 3. Implementation of the NN subcircuit: (a) Multiplier neuron, and (b)
Summer with current to voltage convertor

obtained results. We evaluate this inaccuracy quantitatively in
the section on the case study (cf. Section V).

A. Neural Network Subcircuit

As mentioned earlier, the NN subcircuit for our application
is devoid of an activation function. Only linear analog mul-
tiplier neurons followed by a summer are necessary. Several
analog multiplier neurons have been proposed in the literature
and the topic still is being actively researched [9], [10]. The
final choice of the implementation is governed by the nature of
the application at hand. As would be clear from the discussion
under the case study, accuracy of representing weights is a
crucial factor for thermal simulation. Hence, we choose an
implementation where the weights can be digitally stored.
An added advantage is that, if the digital weights are made
software programmable, then software-aided learning can be
performed on-chip. To provide the desired high simulation
speed, the multiplication should be analog in nature.

Given these considerations we choose to use the multiplier
neuron, shown in Fig. 3(a), as presented in [11]. The weight
is digitally expressed by the string of bits bn . . . b0. The W/L
ratio of the transistors are suitably designed to provide a
binary-weighted current source array. Such neuron multipliers
are connected together to form a summer with a differential
current-to-voltage convertor as shown in Fig. 3(b). Thus, as in
Eqn. 4, the output voltage, for some constant K, is given by

Vout = K
�

j

��

i

bij2
i
�
Vinj

(5)

V. CASE STUDY

A. Target System and Benchmark Applications

Our case study is based on the 8-core UltraSPARC T1
(Niagara-1) architecture from Sun Microsystems [12]. The
floorplan of this chip in two accuracies for the compact model:
340 and 42 cells, is shown in Fig. 4. We derive the thermal
parameters and thickness of Si and Cu layers based on [13].
For benchmarking applications we have chosen several real-
life applications which are run on the UltraSPARC T1 chip
and the utilizations of the cores are noted as reported in [14].
From these utilization numbers we derived the power traces
based on the average power values reported in [12].

(a) (b)

Fig. 4. Floorplan of the Niagara T1 chip divided into (a) 340 and (b) 42
cells as used in the compact modelling

B. Training the Neural Network

We use the fourth-order Runge-Kutta (RK4) differential
equation solver, with a small time-step of h = 100µs to
generate accurate temperature profiles to train the NN, with
the backpropagation learning algorithm [15]. We train the NN
every 5000 iterations of the RK4 solver. Thus, the NN is
trained to predict the temperatures 500 ms into the future.
In [2], it has been shown that for the UltraSPRAC T1 system,
proactive control with predictions of 500 ms can reduce
hotspots by 60% over reactionary policies.

An important issue with the analog implementation of NNs
is the quantization error in translating real valued weights to
corresponding parameters of the analog circuit. The chip-in-
the-loop technique [16] is a method to alleviate this problem.
With this approach, learning of the NN is performed ensuring
that at all times the parameters of the NN are such that an
accurate translation can be made to an analog circuit. From
the circuit shown in Fig. 3(a), it is clear that the quantization
is governed by the number of bits, say b, used to represent
the digital weights: the least normalized unit is 2−b. In the
training phase, at the end of every training epoch, we ensure
that weights are rounded to this normalized unit.
C. Results

After training the NN, we benchmark it against the iterative
RK4 solver that was used to train the NN. We note that the
RK4 solver is used in tools such as HotSpot and factors the
temperature dependence of the resistance matrix. Comparing
our NN method with it would indicate the inaccuracies intro-
duced by the LTI assumption and due to the finite values of
b and r. We quantify this inaccuracy by Emax defined as the
absolute value of the temperature difference between the RK4
solver and the trained NN, maximized across all blocks of the
compact model over a large number of simulation iterations.

We study three parameters of the design: a) accuracy of the
floorplan as used in the compact model, b) r - the maximum
distance between cells with interacting neurons, and c) b -
the number of bits used to represent the digital weights.
The accuracy of the floorplan would be dependent on the
application. Most proactive control techniques are still at the
core level and representing the floorplan at a coarse level
would suffice functionally. Fine grain control however, would

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 18 / 27



Experimental Results Accuracy

Accuracy of NN simulator

First experiment to quantify the

accuracy

Does the NN faithfully represent the

thermal properties?

Does the sensor layout affect the

results? We consider three layouts:

Reg (figure on top),

HS (figure on bottom), and

Rand (randomly generated layouts)
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Experimental Results Accuracy

Accuracy of NN simulator - Results

We plot the results for different values of b - the number of bits in the weight

representation

Clearly, as b increases accuracy increases, for all sensor layouts

Low errors are noted for all configurations (¡= 1.5K for b = 7)
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Experimental Results Run-time adaptability

Adapting to VLSI process variations

Temperature depends on power, which depends on current through the transistor

Leakage current is becoming an increasingly large fraction of the total current.

Further, at higher temperatures leakge current increases exponentially

Unfortunately, leakge current is highly sensitive to process variations
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Figure: Leakage current variation for the 180 nm node, [Source: DAC 2003]
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Figure: Leakage current variation for the 180 nm node, [Source: DAC 2003]
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Experimental Results Run-time adaptability

Adapting to VLSI process variations

Temperature depends on power, which depends on current through the transistor

Leakage current is becoming an increasingly large fraction of the total current.

Further, at higher temperatures leakge current increases exponentially

Unfortunately, leakge current is highly sensitive to process variations
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Figure: Leakage current variation for the 180 nm node, [Source: DAC 2003]
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Experimental Results Run-time adaptability

Adapting to VLSI process variations - Results

So how does this process variation translate to temperature errors?

From our experiments, the error can be as high as 12K!

However, we are able to greatly reduce this with on-chip refinement

The good performance of on-chip refinement holds across sensor layout

configuration
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Experimental Results Run-time adaptability

Adapting to thermal modelling errors

Obtaining thermal model parameters is difficult. Depends on packaging, contact

between chip and heat sink, ambient temperature, etc...

One particular parameter subject to error is conductance to environment denoted as

Genv - the conductive path to the ambient

We did not find any study specifically quantifying the variation inGenv

We varied it from +100% to -80% and noted the errors
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Experimental Results Run-time adaptability

Adapting to thermal modelling errors - Results

From our results, fortunately, the errors inGenv do not translate to very large errors

in temperature (maximum is under 5K)

However, with run-time refinement NNs can nullify even these errors

Again, refinement works well across sensor layout configurations
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Conclusions

Conclusions and further work

Run-time thermal management has become a necessity in today’s systems

We compared existing methods of predicting run-time behaviour

Hardware-based neural network simulators qualitatively out-perform others

We showed how NN simulators can be used with arbitrary sensor layouts

We showed that process variations can lead to significant errors in computed

temperature (up to 12 K)

We showed that with run-time refinement, with negligible overhead, NN simulators

can adapt to nullify such errors
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Conclusions

Thanks

P. Kumar, D. Atienza (ESL, EPFL) Run-Time Adaptable On-chip Thermal Triggers ASP-DAC 2011, Japan 27 / 27


