Rethinking Thermal Via Planning with Timing-Power-Temperature Dependence for 3D ICs

Kan Wang Yuchun Ma Sheqin Dong Yu Wang Xianlong Hong Jason Cong *Tsinghua University, Beijing, P.R.China E-mail: wangkan09@mails.tsinghua.edu.cn*

Outline

- Introduction
- Thermal model and leakage power model
- Thermal-driven Via-planning algorithm
- Experimental Results
- Conclusion

Challenges in 3D IC

- Three-dimensional (3D) integration
 - More and more popular
 - Decreasing wire delay, increasing integration density and improving performance
 - Faced with heat dissipation and temperature problem due to the increased power density and lower thermal conductivity

Power crisis

 leakage power has been more and more and is definitely non-negligible.

4 Source: Shekhar Borkar, Intel Labs

Leakage Power

- leakage power has been more and more and is definitely non-negligible.
- Leakage power is sensitive to temperature
 - Interacting with each other
 - A chicken-egg problem
 - An iterative computation process is needed to get an accurate value of temperature

Relative works

- Leakage power model
 - Leakage power is relative to temperature [ISLPED'03]
- Thermal optimization
 - Thermal-driven floorplanning or placement [ICCAD04][ISQED06][TCAS-I'07][ICCAD'03] [ASPDAC07][ICCSS08]
 - Thermal-driven routing [ASPDAC'05]
 - But maximum temperature is still too high
- Thermal cooling technology
 - Thermal cooling technology
 Thermal-through-silicon-vias (TTSVs)
 remove heat [ASPDAC'05][ICCAD'07]

Thermal Via insertion

- Thermal vias bring in additional cost inimize the
 - It is expensive to manufacture thermal v total Via
 - Take dead-space, create routing congent interconnects and larger delays.
- Thermal via planning methods
 - Nonlinear programming problem[ASPDAC'05], Redistributed dead-space [15,16] and cad to relaxation method [17]
 - However, most of works didn't taken lear error power into account.
- White-space resource constraint
 - [3] proposed that the via space is only 26% of the total white space area instead of fully used

Contribution in this paper

- An exploration approach for TSV planning
 - Iterative TSV planning considering leakagedelay-temperature dependence
 - Performance aware TSV planning with resource constraints
 - Weighted via planning with powertemperature-timing evaluation

Outline

- Introduction
- Thermal model and leakage power model
- Thermal-driven Via-planning algorithm
- Experimental Results
- Conclusion

Problem Description

- Thermal model
 - Estimate temperature profile

Thermal Model

- The computation of leakage depends on temperature profile, temperatures are calculated by thermal model
- Circuit stack partitioned into tile stacks
- A tile stack is modeled as a resistive network.
 - Determine the thermal profile as a function of power profile

Leakage Power Model

- Temperature-dependent leakage power model
 - The leakage power of a grid cell i

$$P_{leakage-i} = A_i \times \alpha \times e^{\beta \times (T_i - T_{base})}$$

- Ai :area of the cell Ti :temperature of the cell
- $\alpha = 100000 \text{ W/m}^2 \text{ and } \beta = 0.025 \text{ for } 130 \text{ nm}$
- Tbase is the reference temperature at which α and β are defined.
 Tbase=110[°]C.
- Spice simulation shows the error is within 10%

The leakage power increases with the temperature superlinearly.

Iterative thermal analysis

 Leakage power and temperature value are interacting with each other

Iterative computation loop 2 or 3 iterations are enough to get an accurate estimation13

Delay-Temperature Dependence

• Delay-temperature dependent model:

$$delay(T) = \frac{delay(T_0)(V_{DD} - V_{TH}(T_0))^{\alpha} T^{\beta}}{T_0^{\beta} (V_{DD} - V_{TH}(T_0) + k(T - T_0))^{\alpha}}$$

Where $k = k_0 + \forall (T - T_0)$

• The values of α , β , γ , k0 are in [DAC'06]:

$k_0 (m V/K)$	γ (mV/K)	α	β
1.2	0.003	1.3	1.5

Outline

- Introduction
- Thermal model and leakage power model
- Thermal-driven Via-planning algorithm
 - Impact of leakage power on temperature
 - Via Estimation and Iterative Via Planning
 - Weighted TSV insertion algorithm and evaluation method
- Experimental Results
- Conclusion

Thermal Impact of leakage power

• Without leakage power considered, temperature estimation can have about 50% error.

Circuit	Area	HPWL	Max Temperature	
			With FLP	With
				TDLP
Ami33	39.2	21.1	136.2	212.2
				(+76.0)
Ami49	1392.9	411.2	128.0	204.8
				(+76.8)
N100	5.4	90.9	117.3	175.4
				(+58.1)
N200	6.1	164.6	123.3	187.9
				(+64.6)
N300	8.8	224.6	135.7	198.6
				(+62.9)

Thermal Impact of leakage power on temperature

16

Temperature distribution with leakage

• Thermal distribution without leakage and with leakage considered on 4 layers

Impact of leakage power on via number

• Considering leakage power result in increase of the total required number of vias greatly

Impact of leakage power on temperature and via number

Circuit	W/O leakage (NLP)			With I	CLP)	
	Initial T (°C)	T with TTSV (℃)	#Via	Initial T	T with TTSV (℃)	#Via
Ami33	152.9	76.8	562	175	75	642
Ami49	215.4	107	31378	277	118	58042
N100	144	77	4728	177.3	80	5294
N200	185.7	80	7879	212	79	8570
N300	258.7	80.1	13094	293	79	15428
Avg	191.3	84.2	11528	226.9	86.2	
Ratio	1	1	1	1.186	1.024	1.

To reach the required temperature after TSV Insertion

Iterative Via Planning

- Pre-Estimated
 - Estimate the total number before actual insertion
 - Consider black space for thermal vias
 - Enough, the temperature can directly reach the target temperature
 - calculate the leakage power from the final temperature.
 - Not enough to reach the target temperature;
 - a few iterations are needed to obtain the convergence,

Weighted TSV insertion

• Two kinds of weights:

Evaluation Function

• **To Evaluate the solution** – 1.Balance Function: alance the weight of temperature, delay and via number

 $Bal(T,d,n) = \alpha \cdot (T - T_{low}) + \beta \cdot delay + \gamma \cdot via_num$ - 2.Punish Function:

$$M(T,d,n) = \begin{cases} M & T > T_{up} \\ 0 & otherwise \end{cases}$$

– 3.Cost Function:

Cost(T, d, n) = Bal(T, d, n) + M(T, d, n)

Evaluate performance aware TSV insertion solution

Outline

- Introduction
- Thermal model and leakage power model
- Thermal-driven Via-planning algorithm
- Experimental Results
- Conclusion

Impacts of T-delay-power dependence

Impact of thermal-driven floorplanning with leakage power

Test cases	Required	Max	Normalized	Via Number	Leakage/	Run Time
	<u> </u>	T	Delay		Dynamic	(s)
	350	350.09	35.90	548	0.0662	7.06
Ami33	380	380.14	38.34	243	0.113	7.97
	410	410.00	41.00	126	0.178	8.39
	350	361.74	31.02	57179	0.0821	4.43
Ami49	380	381.60	31.72	18967	0.115	4.70
	410	410.09	32.61	7553	0.178	5.66
	350	349.80	38.87	14641	0.0658	12.08
N100	380	379.85	39.85	7309	0.112	11.4
	410	410.02	40.76	4329	0.178	15.37
	350	349.86	37.10	19237	0.0659	16.61
N200	380	379.95	38.09	10545	0.112	17.72
	410	409.82	39.53	7174	0.178	17.20
	350	350.03	30.01	32130	0.0661	16.98
N300	380	379.94	31.09	18534	0.112	22.08
	410	410.13	32.10	13248	0.178	18.07_{3}

Impacts of T-delay-power dependence

Impact of thermal resource to Via Number

• With thermal resource considered, vias required can be much more, by about 76.0%.

via_rati 0	Require T(K)	d Max T(K)	Delay	Via Number	Max · L/D	Runtime (s)
1	350	349 95	36.84	1328	0.0660	3 55
0.6	350	349.80	36.82	1928	0.0658	3.75
0.2	350	375.44	37.54	1409	0.0769	4.13
1	380	380.05	39.29	633	0.1126	4.63
0.6	380	380.05	39.27	672	0.1121	5.13
0.2	380	380.15	39.26	1114	0.1123	5.41
1	410	409.92	41.54	443	0.1779	4.39
0.6	410	409.92	41.55	436	0.1779	5.23
0.2	410	409.90	41.47	547	0.1782	5.35

Impact of *via_ratio* in Ami33

Effect of weighted TSV insertion

 Weighted approach can result in more vias to some extent

Reauired	Normal Pattern (NP)			Weighted Pattern (WP)		
T	Max T	Delay	Via Number	Max T	Delay	Via Number
350	350.09	36.84	1327	349.95	36.89	1253
370	369.99	38.46	758	369.81	38.68	723
390	389.99	40.07	549	389.89	40.05	536
410	410.00	41.55	436	411.93	41.69	442
430	430.05	42.96	370	430.10	42.94	382
Ratio	1	1	1	1	1.	0.97

• Weighted approach can improve via number by 5.6% at most and 3.0% on average and the lower *required_T* is the more significant effect is created.

Best results with different weight

Туре	Weight	Max T	Normalized	Via
	(α, β, γ)	(K)	Delay	Number
	0,0,1	430.13	42.67	84
Ami33	0,1,0	350.09	35.90	548
	0.5,0.3,0.2	430.13	42.67	84
	0,0,1	430.17	33.03	5464
Ami49	0,1,0	361.74	31.02	57179
	0.5,0.3,0.2	430.17	33.03	5464
	0,0,1	429.91	41.32	3226
N100	0,1,0	349.80	38.87	14641
	0.5,0.3,0.2	410.02	40.76	4329
	0,0,1	429.84	39.89	5954
N200	0,1,0	349.86	37.10	19237
	0.5,0.3,0.2	409.82	39.02	7174
	0,0,1	430.13	32.72	11436
N300	0,1,0	350.03	30.01	32130
	0.5,0.3,0.2	430.13	32.72	11436

 $Bal(T,d,n) = \alpha \cdot (T - T_{low}) + \beta \cdot delay + \gamma \cdot via_num$

Conclusion

- Temperature sensitivity of leakage power cannot be ignored, especially in 3D designs
- We show the effects of both thermal aware floorplanning and thermal via insertion with leakage power considered
- Experimental results show that it is necessary to control the leakage power with temperature optimized
- With leakage power and resource constraint considered, TSV insertion result can be quite different.
- Weighted via insertion method can reduce total via number without influencing final peak temperature.

