The Impact of Inverse Narrow Width Effect on Sub-threshold Device Sizing

Jan Stuijt, Jun Zhou, Senthil Jayapal

IMEC Netherlands

imec

Overview

- Inverse narrow width effect (INWE)
- Transistor sizing at sub-threshold region
- INWE-based sizing in logic cell libraries
- Effect on functional yield
- Test design; power and area results
- Conclusions

Inverse Narrow Width Effect

- Lower threshold voltage at small width due to Shallow Trench Isolation
- Ids(W) is non-linear!

Different transistor sizing story in subthreshold region for optimal speed, power, and silicon variation!

Transistor Sizing at Sub-Threshold

Transistor sizing for sub-threshold logic (e.g. 0.3V)

- PMOS and NMOS currents should be equal, because of:
 - high performance
 - low power consumption
 - high functional yield
- We want to **minimize W** and L for low power operation
 - non-linear relation between transistor current and width
 - threshold voltage lower at small W (true at least in 90nm, 65nm, 45nm technologies)
- Imbalance in PMOS and NMOS currents
 - especially apparent in sub-threshold operation

Transistor Sizes in Stacks

Transistor width when stacking two transistors

- In super-threshold: x
- In sub-threshold:
- With INWE added:

x 2 x (1+ α) (Kwong: $\alpha = e^{\frac{-\lambda_d V_{dd}}{mV_T}}$) x (1+ α) $e^{\Delta V_t / mV_T}$

Example 65nm

 (W_{min} = 0.12µm,
 V_{dd} = 0.3V)
 W_{stack} = 5 x W_{single}

Transistor Width (µm)

Wp/Wn Width Ratio in Sub-Threshold

180nm: W_p/W_n = 12 fixed (Calhoun) → large area
 65nm: W_p/W_n = 3.25 (example) → small area

Sub-Threshold Sizing in Cell Library

Experimental Results

INWE-based method versus conventional method

- Technology 65nm, $V_{dd} = 0.3V$, $W_{min} = 0.12\mu m$
- Fanout = 4

Logic	Delay	PD Product	Area
gate	reduction	reduction	reduction
INV	0%	0%	0%
NAND	30%	68%	53%
NOR	0%	0%	0%
INV2	18%	43%	39%
NAND2	35%	73%	57%
NOR2	1.5%	6.0%	5.3%

Effect on Delay Chain

10-Stage delay chain

One cell = INV2 + NAND2 + NOR2

• V_{dd} = 0.3V

Sizing	Delay	Power	PDP
	(µs)	(nW)	(fJ)
Without INWE	3.2	3.8	12.2
Proposed sizing	2.8	3.0	8.4

Power-delay product improvement: 30%

Effect on Functional Yield

Better symmetry in PMOS and NMOS currents

- Allows for lower supply voltage
 - e.g. 0.22V instead of 0.24V when considering INWE

→ $1 - (0.22/0.24)^2 = 16\%$ less dynamic power dissipation

With INWE

taken into

account

0.21

0.22

0.21

0.19

0.20

0.20

Test Design

Narrow Band radio digital baseband design

- 90nm CMOS
- Low clock frequency 6MHz
- No SRAM
- ~50 kgates
- $V_{dd} = 0.4V$
- SVT

INWE-Based Sub-Threshold Cell Library

Basic cells

 ND2, NR2, INV, AOI222, IOA22, AO22, MUX, XOR2, DFCNQX1, DFSNQX1, DFX1, DEL0, DEL4, BUFF, BUFFX1, BUFFX2, LHCNX1, LevelShifter, ClockGate

Supply voltage

• 0.3V ... 1.2V

Minimum length and width

- W = 120nm
- L = 90nm

Power and Area Results

Total power reduction by factor 9x at 0.4V

Power	Current design (1.2V)	Sub-threshold design (0.4V)
Active Power	234 µW	26.0 µW
Leakage Power	3.0 µW	0.7 μW
Total Power	237 μ W	26.7 μ W

Area increases marginally by 1.2x due to limited number of standard cells in the library

Current design (mm²)	Sub-threshold design (mm ²)	
0.36	0.43	

Conclusions

- Inverse Narrow Width Effect (INWE) affects threshold voltage
- Must take this into account when sizing transistors to balance rise and fall delays in sub-threshold, especially when using minimum transistor sizes
- Strong positive effect on performance, power, and functional yield
 - 73% reduction in power-delay product (NAND cell)
 - 8% lower supply voltage possible for same yield
 - 9x power reduction on test design (NB digital baseband)
 - just V_{dd} scaling, but achieving 6MHz at 0.4V in 90nm