Vertical Interconnects Squeezing in Symmetric 3D Mesh Network-on-Chip

Cheng Liu, Lei Zhang, Yinhe Han, Xiaowei Li
Key Lab of Computer System and Architecture
Institute of Computing Technology
Chinese Academy of Sciences
Outline

- Background
- Motivation
- TSV Squeezing Scheme
- Experiments
- Conclusion
Background

- **3D Technique**
 - Low latency
 - Heterogeneous integration
 - Manufacture challenge

- **Network-on-Chip**
 - High bandwidth
 - Excellent scalability
 - Large p2p latency

- **3D Network-on-Chip**
 - High bandwidth
 - Excellent scalability
 - Manufacture challenge

 - Low latency
 - Heterogeneous integration
3D Network-on-Chip

- 3D Mesh-bus hybrid architecture
- True 3D fabric architecture
- 3D symmetric architecture
3D IC Manufacture Challenges

3D IC Manufacture Challenges

<table>
<thead>
<tr>
<th>Chip area challenge</th>
<th>TSV for 3D-SOC</th>
<th>TSV for 3D-SIC</th>
<th>Transistor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>TSV pitch 8-16um</td>
<td>TSV pitch 2-4um</td>
<td>ASIC M1 0.054um</td>
</tr>
<tr>
<td>2015</td>
<td>TSV pitch 4-8um</td>
<td>TSV pitch 1.6-3.0um</td>
<td>ASIC M1 0.021um</td>
</tr>
</tbody>
</table>

Reliability challenge

<table>
<thead>
<tr>
<th>Routing congestion</th>
<th>TSV for 3D-SOC</th>
<th>TSV for 3D-SIC</th>
<th>Transistor Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009</td>
<td>TSV pitch 8-16um</td>
<td>TSV pitch 2-4um</td>
<td>ASIC M1 0.054um</td>
</tr>
<tr>
<td>2015</td>
<td>TSV pitch 4-8um</td>
<td>TSV pitch 1.6-3.0um</td>
<td>ASIC M1 0.021um</td>
</tr>
</tbody>
</table>
Observation

- TSV utilization = 0.15 when load = 0.3
- TSV utilization = 0.08 when load = 0.1
- TSV confliction = 0.02 when load = 0.3
- TSV confliction = 0.01 when load = 0.1
TSV Squeezing Scheme

Squeezing Scheme with 4:1 Router Modification
Router Microarchitecture

[Diagram showing the flow of requests from input link to the current router, then to the horizontal link in the upper layer, followed by a transition to the TSV and horizontal link in the nether layer, finally leading to the next router.]
NoC Organization for TSV Squeezing

Corner case A

Corner case B
Experiments

Experiment set up
Topology: 4x4x2 Mesh
Buffer: 2VC x 8flits per port
Router: Two-staged Pipeline
Routing: DOR (XYZ)
Arbitration Analysis

![Graph showing arbitration analysis](image)
Area Overhead
Conclusion

- Propose a TSV squeezing scheme according to the observation of TSV utilization

- Save more than 60% TSV footprint

- Less performance penalty including network latency especially zero-load latency, throughput compared with previous work
Questions?
Thank You!