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Problem Introduction

Modern VLSI Design Flow

I Modern VLSI design follows a top-down hierarchical flow

I Design abstraction decreases throughout the flow

I Design layers are addressed sequentially

I Each design layer guides the next
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Problem Introduction

The Design Closure Problem

I High-level abstractions can cause incorrect decision making
I Large portions of the design space are irreversibly pruned
I Errors found when physical information (interconnect, area)

becomes known, i.e. too late
I Entire design flow repetition is required to ensure design

closure – costly!

I The outlook is not good
I Growing transistor counts, technology scaling, etc. ensure

design closure will become increasingly difficult
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Sequential Incremental Synthesis

Incremental Floorplanning and High-Level Synthesis

I ISCALP, Zhong et al, 2002.

I Computes physical information to incrementally guide
high-level synthesis

I Iterative approach is better, but takes too long to compute

I True parallelism between layers not exposed
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Sequential Incremental Synthesis Flow
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Sequential Incremental Synthesis Run-Time Ratio
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Figure: Computation run-time ratio of sequential incremental synthesis
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Breaking the Sequential Flow

Finding Inter-Design Layer Parallelism

I Traditional top-down hierarchical flow needs to be broken
I Needs vertical integration of layers, holistic approach

I But, how?
I Parallel programming is very difficult!

I How do we guide design layer decision making under
concurrent layer execution?
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Research Goals and Contributions

Goals

I Vertically integrate design layers through holistic approach

I Suite heterogeneous characteristics of design layers

I Mitigate the design closure problem

Contributions

I First work for parallel cross-layer optimization

I Leverage parallel heterogeneous power of CPU/GPU

I Novel GPU floorplanner achieves 24% speedup

I Overall 11X on average speed-up over state-of-the-art



Outline Motivation Poposed Work Results Summary Motivation ISCALP Research Goals Research Introduction

Target Design Layers

High-Level Synthesis

I Operations: Rebinding/Merging/Splitting

I Optimizations: Low power

I High sequential control flow dependencies

I Coarse data granularity, low data parallelism

Physical Design

I Operations: Floorplanning, interconnect cost evaluation

I Optimizations: Low power

I Low sequential control flow dependencies

I Fine data granularity, high data parallelism
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Proposed Solution

Parallel Cross-Layer Optimization

I Parallelism breaks design layer boundaries, speeds computation

I Nondeterminism guides layer execution and communication

I Cross-layer communication enables real-time design
optimization and error correction

Heterogeneous Compute Architecture Mapping

I As a first work, two design layers demonstrate the approach

I HLS → Deeply pipelined superscalar CPU

I Floorplanning → Massively parallel SIMT GPU
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Parallel Incremental Algorithm Flow

Parallel Design Flow

I Nondeterministic transactional model guides layer interactions

I We generate and explore set of (Vdd ,Cs) pairs, P, for a design

I High-level synthesis attempts moves ∀p ∈ P configurations

I GPU collectively finds physical impact of |P| high-level moves

I Moves satisfying both levels of abstraction are kept
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Generate and initialize P and set best as φ
loop

Transaction A: High-Level Synthesis Layer
∃p ∈ P : p.flag = SYN

Generate HLS move
if move succeeded → p.flag := PHY , else p.flag := BRK

Transaction B: Physical Design Layer
∃p ∈ P : p.flag = PHY

Do floorplan for p, p.flag := EVL

Transaction C: Cost Evaluation (Power and Area)
∃p ∈ P : p.flag = EVL

Evaluate design cost
if improved → p.flag := SYN, else p.flag := BRK

end loop
Output p with the lowest cost in P as best
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Design Flow Mapping to Heterogeneous Hardware
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Physical Design on GPU

GPU Simulated Annealing-driven Floorplanning

I Up to 4 GPUs concurrently compute thousands of multiple
candidate floorplans using SIMT architecture

I Each GPU thread computes a single p ∈ P floorplan

I Problem: GPU kernels are atomic, but different designs
require more or less time to reach convergence

I Solution: Dynamically maximize design quality and minimize
run-time cost using thread- and kernel-level convergence
testing
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Floorplanning Convergence Points

MAC benchmark:
Convergence point found at

500 iterations

RANDOM100 benchmark:
Convergence point found at

2000 iterations
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Convergence Points across Configurations
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Figure: Detected convergence points for 1,155 MAC configurations; 90%
of configurations lie left of the vertical line
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Proposed GPU Floorplanning

Figure: GPU kernels with and without convergence testing
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CUDA Floorplanning Algorithm

if threadIdx = 0 then
counterGLOBAL := 0

loop
Generate floorplan move, evaluate moveCOST

if flagCONV = false then
Update HISTORY list, update moveBEST if appropriate

Convergence Test 1: Thread Level
if ∀moves ∈ HISTORY , ≤ 5% improve cost and

∀ improved moves, ≤ 10%×moveBEST then
increment counterGLOBAL, flagCONV := true

Convergence Test 2: Kernel Level
if counterGLOBAL ≥ 90%× |P| then
return

end loop
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Experimental Setup

I Workstation
I Intel quad-core Nehalem 2.13GHz processor
I 4GB memory
I Quad Nvidia Tesla C1060 GPUs

I ISCALP modified based on nondeterministic transactional
model and convergence-aware GPU floorplanner

I 14 0.25 µm-technology benchmarks tested
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GPU Floorplanner Run-Time Speed-Up and Result Quality

Table: GPU Floorplanning: Traditional SA vs. Proposed GPU SA

Benchmark
Traditional SA Proposed GPU SA Improvement

Time Energy Time Energy Speedup Energy (%)

MAC 17.84 2214.56 15.75 2215.20 1.13X 100.02
IIR77 67.10 3422.75 51.63 3433.46 1.29X 100.31

ELLIPTIC 32.52 2837.97 26.60 2847.84 1.22X 100.34
PAULIN 20.58 1242.33 19.61 1241.98 1.04X 99.97
PR1 51.93 2693.80 42.43 2708.64 1.22X 100.55
PR2 83.64 4029.71 63.11 4019.39 1.32X 99.74

DCT IJPEG 53.64 2925.21 41.39 2916.09 1.29X 99.69
DCT DIF 58.78 2222.45 47.54 2219.13 1.23X 99.85

CHEMICAL 35.21 2592.33 29.16 2593.79 1.20X 100.06
WDF 75.17 2301.84 60.91 2304.28 1.23X 100.11

DCT WANG 83.45 1820.14 63.70 1837.53 1.31X 100.96
JACOBI SM 107.15 3646.65 78.85 3661.61 1.35X 100.41
DCT LEE 99.44 3061.91 78.84 3067.20 1.26X 100.17

RANDOM100 141.16 3715.22 107.78 3683.77 1.30X 99.15

Avg. 1.24X 100.09
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Parallel Cross-Layer Run-Time Speed-Up
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Figure: Speed-up of parallel cross-layer optimization approach, while
maintaining comparable result quality
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Summary

I Design closure is an increasingly difficult issue

I Parallelism between design layers needs exploitation

I Optimizations made across design layers must agree
I Parallel Cross-Layer Optimization

I Broken boundaries between layers vertically integrates flow
I Nondeterministic transactions enable design layer concurrency
I Heterogeneous architectures mate well across design layers
I GPU floorplanner dynamically optimizes run-time vs. quality
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