AVS-Aware Power-Gate Sizing for Maximum Performance and Power Efficiency of Power-Constrained Processors

> Abhishek Sinkar and Nam Sung Kim January 28, 2011

Department of Electrical and Computer Engineering University of Wisconsin - Madison

Introduction

Impact of process variations and PG-device size Impact on VV_{DD}

- Impact on F_{MAX} and P_{TOT}
- AVS-aware PG-device size optimization
 - Algorithm and simulation result
- Impact of WID variation on PG sizing
 - Global clocking
 - Frequency island clocking
- Experimental methodology
- Conclusion

Introduction

- Impact of process variations and PG-device size
 Impact on VV_{DD}
 - Impact on F_{MAX} and P_{TOT}
- AVS-aware PG-device size optimization
 Algorithm and Simulation Result
- Impact of WID variation on PG sizing
 Global clocking
 - ⊙ Frequency island clocking
- Experimental methodology
- Conclusion

Introduction

Contributions

- Analyze the impact of D2D variations on
 - Virtual rail voltage (VV_{DD})
 - Maximum operating frequency (F_{MAX})
 - Total power consumption (P_{TOT})
- Propose algorithm to find
 - Optimal PG size
 - Optimal degree of AVS
- Extend algorithm to
 - Multicore processors w/ WID variation
 - o Global clocking
 - Frequency Island clocking

Introduction

Impact of process variations and PG-device size

- Impact on VV_{DD}
- $\odot~$ Impact on F_{MAX} and P_{TOT}
- AVS-aware PG-device size optimization
 Algorithm and simulation result
- Impact of WID variation on PG sizing
 Global clocking
 - ⊙ Frequency island clocking
- Experimental methodology
- Conclusion

• $R_{PG-SLOW} > R_{PG-FAST}$

P. V. + PG Size Impact on VV_{DD}

 s_{PG} increases $\rightarrow R_{PG}$ decreases $\rightarrow VV_{DD}$ increases

- F_{MAX} increase diminishes rapidly
- P increases faster than F_{MAX}

Larger PG device suitable for fast die, smaller for slow die

Introduction

- Impact of process variations and PG-device size
 Impact on VV_{DD}
 - Impact on F_{MAX} and P_{TOT}

AVS-aware PG-device size optimization Algorithm and simulation result

- Impact of WID variation on PG sizing
 Global clocking
 - ⊙ Frequency island clocking
- Experimental methodology
- Conclusion

AVS Aware PG Size Optimization

Algorithm

Simulation Result

Proc. Corners	Slow		Nom		Fast	
P _{TDP}	65W	70W	90W	100W	120W	130W
V _{DD} @ s _{PG} =1	0.945	0.955	0.900	0.923	0.825	0.840
S _{PGOPT}	0.755	0.715	0.640	0.515	0.568	0.455
V _{DDOPT}	0.955	0.975	0.915	0.948	0.845	0.875
f _{MAX}	0.999	0.999	0.999	~1.000	~1.000	~1.000

 24.5%, 36% and 43.2% reduction in PG size for slow, nominal and fast corners

Introduction

- Impact of process variations and PG-device size
 Impact on VV_{DD}
 - Impact on F_{MAX} and P_{TOT}
- AVS-aware PG-device size optimization
 Algorithm and simulation result

Impact of WID variation on PG sizing

- ⊙ Global clocking
- ⊙ Frequency island clocking
- Experimental methodology
- Conclusion

WID Variation

S. Sarangi et al. IEEE Trans. On Semiconductor Manufacturing, vol. 21, no. 1, pp. 3~13, Feb. 2008.

- WID spatially correlated
- Result in C2C F_{MAX} and I_{LEAK} variation
- As # of cores increases
 - Relative variation among cores more significant

Global Clocking

- Limits F_{MAX} of multicore processor to that of slowest core
- Total power consumption of a N core processor • $P_{TOT} = \sum_{i=1}^{N} \left(F_{MAX,j} \left(VV_{DD,j} \right) \times C_{EFF} \times VV_{DD,i} + I_{LEAK,i} \left(VV_{DD,i} \right) \right) \times VV_{DD,i}$
 - where N = no. of cores
 - = index of slowest core on die
 - C_{eff} = effective switched capacitance per core

Global Clocking

As PG size increases, faster(leakier) cores increase I_{LEAK} , F_{MAX} is fixed by slowest core.

Frequency Island Clocking

- Each core runs at its own max. frequency
- Total power consumption of a N core processor • $P_{TOT} = \sum_{i=1}^{N} (F_{MAX,i}(VV_{DD,i}) \times C_{EFF} \times VV_{DD,i} + I_{LEAK,i}(VV_{DD,i})) \times VV_{DD,i}$

• For compute-bound workloads with sufficient # of threads • Performance(Throughput) = $\left[\sum_{1}^{N} F_{MAX,i}\right]/N$

Throughput Experiment with FI Clk.

PG Sizing with FI clocking and WID Var.

Use F_{MAX,AVG} to compute P³/W constraint

Introduction

- Impact of process variations and PG-device size
 Impact on VV_{DD}
 - Impact on F_{MAX} and P_{TOT}
- AVS-aware PG-device size optimization
 Algorithm and simulation result
- Impact of WID variation on PG sizing
 Global clocking
 - ⊙ Frequency island clocking
- Experimental Methodology
- Conclusion

Experimental Methodology

• For frequency and leakage modeling with power gates

• V_{th} and L_{eff} WID spatial and D2D variation map*

• WID variation : Correlation coefficient = 0.5

• D2D variation : $\sigma_{V_{th}}^{sys} = 6.4\%$

24 FO4 INV chain for measuring $f(V_{DD})$ 32nm PTM SPICE model Dummy gates for measuring I(V_{DD}) <u>Effective Widths</u> 50% INV. 30% NAND.20% NOR

 V_{DD}

 VV_DD

 $I_{DYN}(VV_{DD})$

LEAK

SLEEP

Experimental Methodology

• Power and thermal constraint

• P_{TDP} at $V_{DD,TDP}$ = 90 W (at the nominal corner)

o $T_{jmax} = 100$ ° C

Performance simulation with GPGPU-Sim

• Simulator modified to support FI clocking

# of SM Cores	4/8/16	Shared Mem/SM	16KB
SIMD Width/SM	1/4/8	# of Mem Ch.	4
# of Threads /SM	1024	BW/ Mem Ch.	8B/Cycle
3 of CTAs/SM	8	DRAM Rq. Queue	16
# of Registers/SM	16384	Mem Controller	FR-FCFS
Constant and Texture Cache Sizes	8KB, 2- Way, 64B Line	GDDR3 Mem# of SM Cores . tCL/tRP/tRAS	10/10/35/25

Conclusion

- Effect of PG-device sizing on F_{MAX} and P_{TOT}
 - \odot F_{MAX} and P_{TOT} both increase, P_{TOT} increases faster than F_{MAX}.
 - Rate of increase diminishes quickly for slow die than for fast die

Reduction in PG-device size

- D2D variation :
 - o 24.5%(slow), 36%(nominal) and 43.2%(fast)
- WID variation
 - o Global Clk. 59%
 - o FI Clk. 58% (4 cores), 57% (16 cores)
- F_{MAX} penalty
 - D2D variation : negligible
 - WID variation : improved F_{MAX} by ~3%
- As #. of cores increases
 - Opt. PG size increases
 - Opt. V_{DD} for AVS decreases