Deflection Routing in 3D Networkon-Chip with TSV Serialization

Jinho Lee, Dongwoo Lee, Sunwook Kim and Kiyoung Choi

2013. 01. 23 Design Automation Lab, SNU

- 3. Together

Deflection Routing

<u>Deflection Routing</u> in <u>3D NoC with</u> <u>TSV Serialization</u>

1. 3D NoC

1. Motivation

- 3D NoC

2. Background

Deflection routing

3. Deflection Routing for 3D NoC

- Input/output Imbalance Problem
- 3D Deflection Overhead Problem
- Deadlock Problem
- 4. Experimental Result
- 5. Conclusion

Distribution, 3D NoC

NoC

• Example 4x4 Mesh

□ Introduction

- 3D integration
 - Stacking multiple dies over others
 - New trend for high performance and low energy

- Apply 3D technology to NoC...
 - Looks like this

TSV (Through-silicon-via)

Assumption

 Inter-layer (TSV) links are narrower than intralayer (wires) in their width _{Wires (128bits)}

- Because TSVs are limited in its number

- Area
- Reliability, expensive process, etc..
- ->A flit needs 4 cycles to traverse thorough a TSV-link (1 cycle for a planar wire-link)

Motivation

 If XYZ routing is used, congestions on TSV links will last long.

• Taking non-minimal path may be beneficial

Solutions

- Adaptive routing will solve the problem
 - Hard to design
 - Large area
 - Needs extra VCs

• Deflection Routing can be a cheaper solution

Background, Deflection Routing

Deflection Routing

- More buffers
 - Pros : high performance
 - Cons : large area, power consumption
- Bufferless deflection routing tries to get rid of buffers with minimal performance loss

• Flits destined to local node is ejected in stage 1

- A new flit is injected only when there is a free slot (either by ejection or no input)
- Permute stage replaces 4x4 crossbar
 Cheaper, but partial permutability only

Summary of deflection routing

- Eliminates input buffer of traditional router
- Advantage
 - Power reduction (50%)
 - Area reduction (40%)
- Disadvantage
 - Reduced bandwidth
 - Increased power consumption on high load
 - Additional information on each flit
- Deflection routing is naturally adaptive in a very cheap way

Deflection Routing for 3D NoC

Basic Idea

• When deflection routing is applied to target 3D NoC, it is expected to balance the utilization of inter-layer traffic

Problem 1 (Excess Input)

- Problem 1: There may not be enough outputs
 - Deflection routing works because there are same number of inputs and outputs

TSV

On transmission

 However, a TSV link may not be done transmitting because it takes 4 cycles

18

Problem 2 (3D Deflection)

- Problem 2: Deflection through TSV link is not desirable
 - When a flit is deflected to a TSV link, it takes 4 cycles.
 - During 4 cycle, the TSV link cannot be used by any other flit
 - The deflected flit eventually has to come back (4 more cycles)
 - TSV consumes more energy

Solution of Problem 1, 2

- Treating TSV ports like ports to end-node (inject / eject) can solve the problems
 - Flits directed to TSV ports are taken in first stage
 - Flits coming from TSV ports are injected only when there is a free slot

Deadlock Problem

• Using TSV ejection scheme, a deadlock can occur

Deadlock avoidance

 1. When Rx buffer is filled, Tx buffer should not accept a new flit. (a TSV link can hold at most one flit at a time)

Solution of Deadlock Problem

• Escaping from deadlock

Deadlock avoidance

- 2. Entrance to TSV Tx buffer is allowed on following condition even though its Rx buffer is filled
 - There is no free slot in the 2D input ports.
 - The TSV Rx buffer on same layer is ready to inject (full).
 - The TSV Tx buffer is empty (receive buffer on the other side may be full).

Solution of Deadlock Problem

• Escaping from deadlock

- Fit was not a double look?
- What if it was not a dead-lock?
 - Does not cause a functional problem

Experimental Result

DExperimental Result

- 4x4x4 configuration
- Compared with 4 other routers
 - Simple buffered 8 buffers
 - VC buffered 4 VC, 8 buffers per VC
 - Naïve deflection allowing inter-layer deflection
 - adaptiveXYZ minimal adaptive routing for 3D NoC
- Four traffic patterns
 - Uniform random, Hotspot random, Tornado, Bit-complementary

DExperimental Result - latency

- Metric "*saturation load*" input load when latency exceeds 500 cycles
 - 25.3 % better than simple buffered
 - 9.2% better than adaptiveXYZ

DExperimental Result -thruput

0.3

Saturated Throughput •

- 1.9% better than simple buffered
- 1.2% worse than adaptiveXYZ
- Reaches maximum point quickly

DExperimental Result – power efficiency

- Energy per packet
 - Minimum : 33.3% lower than simple buffered
 72.5% lower than adaptiveXYZ
 - Saturated : 13.3% higher than simple buffered
 54.3% lower than adaptiveXYZ

Conclusion

- Use of bufferless deflection routing is suggested on 3D NoC with TSV serialization.
- Some problems are solved.
 - Excess Input
 - 3D deflection
 - Deadlock & livelock
- Higher performance in terms of throughput and power efficiency is obtained.

The End

- Thank you for your attention
- Feel free to ask any questions

• Side buffer stores at most one deflected flit per cycle

Reduces deflection rate

[2] C. Fallin et. al, "MinBD: Minimally-Buffered Deflection Routing for Energy-Efficient Interconnect," in *Proc. NOCS*, 2012

Livelock Avoidance (opt)

• Livelock is avoided using sidebuffer

- "golden packet" always wins.
- If golden packet's way is TSV and it is blocked, put it into sidebuffer instead.
- Duration for flit to stay in sidebuffer is limited and advance of golden packet is guaranteed.