
On Real-Time STM Concurrency Control

for Embedded Software

with Improved Schedulability

Mohammed Elshambakey and Binoy Ravindran

Virginia Tech

USA

{shambake,binoy}@vt.edu

ASP-DAC 2013

Concurrency control on chip multiprocessors

significantly affects performance (and

programmability)

 Improve performance by exposing greater concurrency

 Amdahl’s law: relationship between

sequential execution time and

speedup reduction is not linear

 Significant implications for embedded real-time software

 Inherently concurrent – react to multiple streams of sensor input

and control multiple actuators

 Often concurrently read/write shared data objects

S
u

n
 T

2
0
0
0
 N

ia
g

a
ra

(8
-c

o
re

)

Lock-based concurrency control

has serious drawbacks

 Coarse grained locking

 Simple

 But no concurrency

Fine-grained locking is better,

but…

 Excellent performance

 Poor programmability

 Lock problems don’t go

away!

 Deadlocks, livelocks,

lock-convoying, priority

inversion,….

 Most significant difficulty –

composition

Lock-free synchronization overcomes some of

these difficulties, but…

“l
o
c
k
-f

re
e
 r

e
tr

y
 l
o
o
p
”

Transactional Memory

 Like database transactions

 ACI properties (no D)

 Easier to program

 Fine-grained performance

 Composable

 First HTM, then STM, later HyTM

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for

lock-free data structures. ISCA. pp. 289–300.

N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

How does TM work?

 Idea: speculate

 Example: add 9 and 15 concurrently

Thread A adds 9 and thread B adds 15

Thread A

Read-set: 8

Write-set:

Thread B

Read-set: 8

Write-set:

Thread A adds 9 and thread B adds 15

Thread A

Read-set: 8,10

Write-set:

Thread B

Read-set: 8,10

Write-set:

Thread A adds 9 and thread B adds 15

Thread A

Read-set: 8,10

Write-set: 10 (LC)

Thread B

Read-set: 8,10,14

Write-set:

Thread A adds 9 and thread B adds 15

Thread A

Read-set: 8,10

Write-set: 10 (LC)

Thread B

Read-set: 8,10,14

Write-set: 14 (RC)

(Committed successfully)

Thread A adds 9 and thread B adds 15

Thread A

Read-set: 8,10

Write-set: 10 (LC)

Thread B

Read-set: 8,10,14

Write-set: 14 (RC)

(Committed successfully) (Committed successfully)

Object-based granularity causes conflict

(in this case)

Thread A

Read-set: 8,10

Write-set: 10

Thread B

Read-set: 8,10,14

Write-set: 14

(Committed successfully) (Conflict, so abort and retry)

Optimistic execution yields performance gains at

the simplicity of coarse-grain, but no silver bullet

STM

Fine-grained

locking

Coarse-grained

locking

Threads

Time

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-

STM: A High Performance Software Transactional Memory. ACM PPoPP.)

 Irrevocable operations

 Interaction between

transactions and

non-transactions

 Conditional waiting

 ……

Three key mechanisms needed to create

atomicity illusion

atomic{

 x = x + y;

}

Versioning

Where to store new x until

commit?

 Eager: store new x in

memory; old in undo log

 Lazy: store new x in write

buffer

atomic{

 x = x + y;

}

atomic{

 x = x / 25;

}

T0 T1

Conflict detection

How to detect conflicts between

T0 and T1?

 Record memory locations read in

read set

 Record memory locations wrote in

write set

 Conflict if one’s read or write set

intersects the other’s write set

Third mechanism determines transactional progress

 x = x + y;

 x = x / 25;

T0 T1

Conflict resolution or contention management

 x = x / 25;

Which transaction to abort?

 Polite: familiar exponential backoff

 Greedy: favor those with an earlier start time

 Karma: ….

(Starvation

may occur)

Wait-free progress is necessary for real-time STM

 Bound retry cost to satisfy time constraints

 Rely on existing versioning and conflict detection techniques

 Contention management directly affects transactional progress

 Starvation-freedom is necessary

Paper’s contribution

 Prior research have developed real-time contention managers,

with bounded retry costs and response times

 Earliest deadline first contention manager (ECM)

 Rate monotonic contention manager (RCM)

 Length-based contention manager (LCM)

 But they restrict to one object access per transaction

 Paper presents new contention manager: PNF

 Allows multiple objects per transaction

 Bounds retry costs and response times

 Formal comparison with past CMs and lock-free

 Implementation

M. El-Shambakey and B. Ravindran. STM concurrency control for embedded

real-time software with tighter time bounds. In DAC, pages 437–446, 2012

Model is traditional real-time model

 Threads arrive periodically, with deadlines equal to periods

 Threads subsume transactions

 Execute on a CMP

 Two schedulers: global EDF (G-EDF) and global RMA (G-RMA)

 Total thread utilization demand satisfies G-EDF (G-RMA)’s

schedulable utilization bound

Thread

release

τi

Thread

completion Next

thread

release

Time
Thread period, Ti = relative thread deadline

Transaction

Earliest Deadline CM

)()(ss
l
j

k
i

)(s
k
i

)(s
l
j

 γi: tasks sharing objects θ with τi

 : lth atomic section of τj

 smax(θ): longest atomic section in all tasks

 : longest atomic section in τi accessing θ)(
max

si

Thread execution time is inflated with

worst-case transactional retry cost

 Each interference may cause a retry

 Cji is the inflated WCET of τj relative to τi:

 Cj : WCET of τj without retries

 ɵ: shared object between τj and τi

 len(sj(ɵ)) : length of all atomic sections in τj that accesses ɵ

 RC(τji): retry cost of τj without considering τi

 G-EDF (G-RMA)’s response time analysis can now be used

to determine schedulability of ECM

ECM can be formally compared with

G-EDF/lock-free synchronization

 Utilization demand-based schedulability (i.e., Ui = Ci/Ti)

 Less demand is better

 ECM is better than G-EDF/lock-free if smax < rmax/2

 smax : max cost of one transactional retry

 rmax : max cost of one lock-free retry

 With low # conflicting tasks, smax approaches rmax

Thread set
R

e
tr

y
 c

o
s
t

smax

rmax/2

rmax

STM can tolerate higher retry

costs than lock-free and still be

competitive

 ECM, RCM, and LCM suffer from transitive retry

 Significantly wasted processor time for lower priority jobs

Priority CM with Negative value and First access (PNF)

se
f(θ3, θ4)

sa
b(θ1, θ2)

sc
d(θ2, θ3) sc

d(θ2, θ3)

sa
b(θ1, θ2)

wasted processor time

Design goals of PNF…

 Allow multiple objects per transaction

 Tight bound for transitive retry

 Reduce wasted processor time

PNF design rationale

sa
b(θ1, θ2)

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p1

p2

p3

sa
b(θ1, θ2)

sc
d(θ3, θ4)

PNF rationale

sa
b(θ1, θ2)

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p1

p2

p3

sa
b(θ1, θ2)

sc
d(θ3, θ4)

se
f(θ1, θ5)

se
f(θ1, θ5)

PNF rationale

sa
b(θ1, θ2)

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p1

p2

p3

sa
b(θ1, θ2)

sc
d(θ3, θ4)

se
f(θ1, θ5)

se
f(θ1, θ5)

sg
h(θ1, θ6) p4

PNF rationale

sa
b(θ1, θ2)

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p1

p2

p3

sa
b(θ1, θ2)

sc
d(θ3, θ4)

se
f(θ1, θ5)

se
f(θ1, θ5)

sg
h(θ1, θ6) p4

sg
h(θ1, θ6)

sg
h(θ1, θ6)

si
j(θ5, θ7) p5

si
j(θ5, θ7)

τl
k

p3

PNF rationale

sa
b(θ1, θ2)

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p1

p2

p3

sa
b(θ1, θ2)

sc
d(θ3, θ4)

se
f(θ1, θ5)

se
f(θ1, θ5)

sg
h(θ1, θ6) p4

sg
h(θ1, θ6)

sg
h(θ1, θ6)

si
j(θ5, θ7) p5

si
j(θ5, θ7)

PNF rationale

sa
b(θ1, θ2)

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p1

p2

p3

sa
b(θ1, θ2)

sc
d(θ3, θ4)

se
f(θ1, θ5)

se
f(θ1, θ5)

sg
h(θ1, θ6) p4

sg
h(θ1, θ6)

sg
h(θ1, θ6)

sg
h(θ1, θ6)

PNF rationale

sc
d(θ3, θ4)

m_set n_set

se
f(θ1, θ5)

p2

p3

sc
d(θ3, θ4)

se
f(θ1, θ5)

se
f(θ1, θ5)

sg
h(θ1, θ6) p4

sg
h(θ1, θ6) se
f(θ1, θ5)

PNF’s retry cost and response time bounds

 Retry cost bound during interval L

 Blocking time bound due to lower priority jobs

 Response time bound of τi
x

Schedulability comparison

In the absence of transitive retry:

 PNF ≥ ECM when conflicting atomic sections have equal lengths

 PNF ≥ RCM when a large number of tasks heavily conflict

 PNF ≥ G-EDF/LCM’s if the conflicting atomic section lengths are

approximately equal and all α terms approach 1

 PNF ≥ G-RMA/LCM’s if:

 lower priority tasks suffer increasing number of conflicts from

higher priority tasks

 Lengths of the atomic sections increase as task priorities

increase

 PNF ≥ lock-free if smax/rmax ≤ 1

 Better than ECM! (and also other past CMs)

Implementation studies:

experimental settings

 Implemented ECM, RCM, LCM, and PNF

 3 task sets

 ChronOS real-time Linux kernel

(chronoslinux.org)

 8-core, 2GHz AMD Opteron

 RSTM CAS for lock-free

Implementation studies:

retry cost under single shared object

4 tasks

1 shared object per transaction

CMs and lock-free

Retry cost measured by varying

max transaction length,

min transaction length, and

transactions: (total, max, min)

Implementation studies:

retry cost under multiple shared objects

4 tasks

20 shared objects per transaction

40% write

4 tasks

40 shared objects per transaction

80% write

Conclusions

 Presented a real-time STM contention manager: PNF

 Allows multiple objects per transaction; avoids transitive retry

 Bounded retry costs and response times

 Schedulability comparisons established PNF’s superiority

 Implementation confirmed PNF’s superiority

 Allows reaping STM’s programmability and composability

advantages for a broader range than previously possible

 On the negative side:

 Relatively complex implementation

 Greater priority inversion

 Must declare all transactional objects at transaction-start

FBLT: A Real-Time Contention Manager with Improved Real-Time

Schedulability, M. El-Shambakey and B. Ravindran, DATE 2013

