N oftware ; e ou_spin_ur

Research Group, ; 0 e

On Real-Time STM Concurrency Control

for Embedded Software

with Improved Schedulability

Mohammed Elshambakey and Binoy Ravindran

Virginia Tech
USA
{shambake,binoy}@vt.edu

ASP-DAC 2013 Vugumua Tech

significantlyl affects perform'ance (énd
programmability)

o Improve performance by exposing greater concurrency

o Amdahl’s law: relationship between
sequential execution time and

speedup reduction is not linear T
16.00 /l/ Parillengfon]
14.00 / — I
© 00 Y, —
S a
g E: 0.00 (/
g ® 00 / //
CZ) 6.00 ///
S .00 e —
QT 2.00-%/
N
|—O o.on_‘&\,‘(,,mggmgw\’a&N ol
% (i) B H& b 8 g 8 & 8 & i
(D @ mi Processors

o Significant implications for embedded real-time software

o Inherently concurrent — react to multiple streams of sensor input
and control multiple actuators

o Often concurrently read/write shared data objects

Lock-based concurrency control
has serious drawbacks

o Coarse grained locking

public boolean add(int item) {

a Simple Mode pred, curr;
lock.lock();
o But no concurrency try {
pred = head:;

curr = pred.next;

while (currval < item) {
pred = curr;
CUrT = currnext;

}

if (item == currval) {
recurn false;

} else {
Mode node = new MNode(item);
node.next = curr;
pred.next = node;
Feturn true;

}

} finally {
lock.unlock();

}
}

Fine-grained locking is better,

but...

Excellent performance
Poor programmability

Lock problems don’t go
away!
o Deadlocks, livelocks,
lock-convoying, priority
inversion,....

Most significant difficulty —

composition

public boolean add(int item) {
head.lock();
Mode pred = head;
try {
Mode curr = pred.next;
curr.lock();
try {
while (currval < item) {
pred.unlock();
pred = curr;
CUrr = currnext;
curr.lock();
}
if (currkey == key) {
return false;
}
MNode newMNode = new MNode(item);
newMNode.next = curr;
pred.next = newNode;
return true;

} finally {
curr.unlock();

}
} finally {
pred.unlock();

}
}

Lock-free synchronization overcomes some of
these difficulties, but...

“lock-free retry loop”

public boolean add(int item) {
while (true) {
Mode pred = null, curr = null, succ = null;
boolean[] marked = {false}; boolean snip;
retry: while (true) {
pred = head; curr = pred.next.getReference();
while (true) {
succ = curr.nexc.get(marked);
while (marked[0]) {
snip = pred.next.compareAndSet{curr, succ, false, false);
if (!snip) continue retry;
curr = succ; succ = currnext.get(marked);
}

if (curr.val < item)
pred = curr; curr = succ;

I!l
if (currval == item) { return false;

} else {

Mode node = new MNode(item);
node.next = new AtomicMarkableReference(curr, false);
if (pred.next.compareAndSet(curr, node, false, false)) {return true;}

}

Transactional Memory

o o o o O

Like database transactions
ACI properties (no D)
Easier to program
Fine-grained performance
Composable

First HTM, then STM, later HyTM

public boolean add(int item) {
Mode pred, curr;
atomic {
pred = head;
curr = pred.next;
while (currval < item) {
pred = curr;
CUrr = CUrr.next;
}
if (item == currval) {
recurn false;
} else {
Mode node = new MNode(item);
node.next = curr;
pred.next = node;
recurn true;

}
}

M. Herlihy and J. B. Moss (1993). Transactional memory: Architectural support for

lock-free data structures. ISCA. pp. 289-300.

N. Shavit and D. Touitou (1995). Software Transactional Memory. PODC. pp. 204—213.

How does TM work?

o ldea: speculate
o Example: add 9 and 15 concurrently

Thread A adds 9 and thread B adds 15

Thread A Thread B
Read-set: 8 Read-set: 8
Write-set: Write-set:

Thread A adds 9 and thread B adds 15

Thread A Thread B
Read-set: 8,10 Read-set: 8,10
Write-set: Write-set:

Thread A adds 9 and thread B adds 15

Thread A Thread B
Read-set: 8,10 Read-set: 8,10,14
Write-set: 10 (LC) Write-set:

Thread A adds 9 and thread B adds 15

(8)
(34 10

O Q) (4
@ OB ©

Thread A Thread B
Read-set: 8,10 Read-set: 8,10,14
Write-set: 10 (LC) Write-set: 14 (RC)

(Committed successfully)

Thread A adds 9 and thread B adds 15

(8)
(32 10,

ORROIO T
@ OB @

Thread A Thread B
Read-set: 8,10 Read-set: 8,10,14
Write-set: 10 (LC) Write-set: 14 (RC)

(Committed successfully) (Committed successfully)

Object-based granularity causes conflict

(in this case)
(&)
(3, 10,

O Q) (4
@ OB I

Thread A TiMead B
Read-set: 8,10 Write-after-read —> Read-set: 8,10,14
Write-set: 10 €< Write-set: 14

(Committed successfully) (Conflict, so abort and retry)

Optimistic execution yields performance gains at
the simplicity of coarse-grain, but no silver bullet

Time A Coarse-grained
o lrrevocable operations
a Interaction between

/ locking
transactions and

STM non-transactions

Fine-grained o Conditional waiting
locking

>
Threads

E.g., C/C++ Intel Run-Time System STM (B. Saha et. al. (2006). McRT-
STM: A High Performance Software Transactional Memory. ACM PPoPP.)

Three key mechanisms needed to create
atomicity illusion

Versioning Conflict detection
TO T1
atomic/{ atomic/{ atomic/{
X = x + y; X = X + y; x = x / 25;
} } }
Where to store new x until How to detect conflicts between
commit? TO and T17?
o Eager: store new x in o Record memory locations read in
memory; old in undo log read set
o Lazy: store new x in write o Record memory locations wrote in
buffer write set

o Conflict if one’s read or write set
intersects the other’s write set

Third mechanism determines transactional progress

Conflict resolution or contention management

TO T1
X =X + y; x = x / 25;
X = x / 25;

Which transaction to abort?
o Polite: familiar exponential backoff

o Greedy: favor those with an earlier start time
o Karma:

(Starvation
may occur)

Wait-free progress is necessary for real-time STM

o Bound retry cost to satisfy time constraints
o Rely on existing versioning and conflict detection techniques

o Contention management directly affects transactional progress
o Starvation-freedom is necessary

Paper’s contribution

o Prior research have developed real-time contention managers,
with bounded retry costs and response times

o Earliest deadline first contention manager (ECM)
o Rate monotonic contention manager (RCM)
o Length-based contention manager (LCM)

M. EI-Shambakey and B. Ravindran. STM concurrency control for embedded
real-time software with tighter time bounds. In DAC, pages 437-446, 2012

o But they restrict to one object access per transaction

o Paper presents new contention manager. PNF
o Allows multiple objects per transaction
o Bounds retry costs and response times

o Formal comparison with past CMs and lock-free
o Implementation

Model is traditional real-time model

o Threads arrive periodically, with deadlines equal to periods

Thread
Thread Transaction completion
release / P next
T l thread

. ﬂ D release

Time

Thread period, T, = relative thread deadline

Threads subsume transactions
Execute on a CMP
Two schedulers: global EDF (G-EDF) and global RMA (G-RMA)

Total thread utilization demand satisfies G-EDF (G-RMA)'s
schedulable utilization bound

o O O O

Earliest Deadline CM

S'J.(g)
| o | ,

sK (%)
| e —

si (D +s' (P
RO() <Y ((T (H 3 ten u'.s-iﬁ-l:e:l+.s-.wlzﬂzlj)) —s-nm':ﬂ:l+s=-m,|:9:|)

i &7 (6] I st ey
o y;: tasks sharing objects 8 with
0 53(0): ™ atomic section of ¢,
0 S (0): longest atomic section in all tasks
o Si_(©): longest atomic section in z; accessing 6

Thread execution time is inflated with
worst-case transactional retry cost

o Each interference may cause a retry
o C; Is the inflated WCET of 1, relative to 7;:

Cii = Cq — - len(s;(0)) | + RO(T5;)
3 3 . LS gty
B (6 Ay)

C;: WCET of r; without retries

o: shared object between 7, and 7,

len(s;(e)) : length of all atomic sections in 7, that accesses o
RC(r;): retry cost of 7, without considering 7,

o o o o

o G-EDF (G-RMA)'s response time analysis can now be used
to determine schedulability of ECM

|] Z .
L!J." — . .| r] b T 1; . r I__J.'I "
"'ril-: G + "'i?li- I-E*I + [.-_-,-. Py I 8 I- "'ril-! ..IJ

ECM can be formally compared with
G-EDF/lock-free synchronization

o Utilization demand-based schedulability (i.e., U, = C/T))
o Less demand is better

o ECM is better than G-EDF/lock-free if S, < I'ax/2
Q0 S, . Max cost of one transactional retry

max *

0 I, . Max cost of one lock-free retry

o With low # conflicting tasks, s,.., approachesr,,.,

A [ax

STM can tolerate higher retry S %f—- S:1ax Y
costs than lock-free and still be % //_/ max
competitive 0
Thread set
>

Priority CM with Negative value and First access (PNF)

o ECM, RCM, and LCM suffer from transitive retry
| |

T mom |

| 5402, 03) YW s°4(02. 03)

: I
wasted processor time
]

5%(01, 62) 5%(61, 62)

o Significantly wasted processor time for lower priority jobs

Design goals of PNF...

o Allow multiple objects per transaction
o Tight bound for transitive retry
o Reduce wasted processor time

PNF design rationale

m_set) _HENGNDN

s2,(01, 62) |
|
s¢4(03, 64) : s (03, 64)

SRS 0105

PNF rationale

m_set

s2,(01, 62)
s¢4(03, 64) s (03, 64)

s (01, 02)

15

7

pP3

>

>

P1 |n_set |

se(01, 05)

PNF rationale

‘m_set | PL n_set |
sa (01, 62)

1 p2
|

1 | 3
|

MY <5 01, 66) [p4

PNF rationale

‘m_set ! Pl n_set
'
C I (S

s¢,(03, 64) Al (03, 04) l P2 se(01, 65)

si(05,07) [>
I
% | P35
— |
] | I
|
- - -:T> ooy | Pt |
|
|
e < 05,67 | pS

b
©
w
YA

|

PNF rationale

imset| HENGHR | P1 |n_set

5. I
s¢,(03, 04) : s°. (03, 64) l W s° (01, 05)

565, 67)

I
I
1L ? { al Mi’}% l

- - M) | s
[l < 05.07) | 5,

PNF rationale

s9,(01, 66)
08 0 l P2
=

s, (01, 62)

e, l 3
R i P

PNF rationale
1 p2
sef(el 65 >

| B | p3

[l .01, 06) [p4

PNF’s retry cost and response time bounds

o Retry cost bound during interval L

RO(L) < Z Z ({%W _|_1) Z len (ﬁf,l?ﬂJ)
j

TiET |\ P vsl(8)

o Blocking time bound due to lower priority jobs

. 1 L]
D7) = E; ([ﬁ—‘ -|-1) ;E{:-ﬂ. (-;";-)

o Response time bound of 7*

R <¢i+ RC(L)+ D(7) + ﬁ > vitipopi Wi (R}”J}J

Schedulability comparison

In the absence of transitive retry:

Q

Q

PNF > ECM when conflicting atomic sections have equal lengths
PNF > RCM when a large number of tasks heavily conflict

PNF > G-EDF/LCM's if the conflicting atomic section lengths are
approximately equal and all a terms approach 1

PNF > G-RMA/LCM’s if:
o lower priority tasks suffer increasing number of conflicts from
higher priority tasks
o Lengths of the atomic sections increase as task priorities
Increase

PNF > lock-free if s, /I S 1
o Better than ECM! (and also other past CMs)

Implementation studies:
experimental settings

Q

Q

Implemented ECM, RCM, LCM, and PNF
3 task sets

ChronOS real-time Linux kernel
(chronoslinux.org)

8-core, 2GHz AMD Opteron
RSTM CAS for lock-free

Piis) | calis)

1500000 | 961000

1875000 | 175000

Pi(ps) | elps) 2500000 | 205000
1000000 | 227000 3000000 | 129000
1500000 | 410000 3750000 | 117000
3000000 | 299000 5000000 | 269000
5000000 | 500000 7500000 | 118000

15000000 | 609000

Pi(ps) cilf15)
375000 9000

400000 S000

500000 S000

GO0000 14000
625000 | 375000
750000 19000
1000000 | 26000
1200000 | 17000
1250000 | 21000
1500000 | 33000
1875000 | 39000
2000000 | 43000
2500000 | 18000
3000000 | 90000
3750000 | 28000
5000000 | 126000
7500000 | 231000
104000000 | 407000
15000000 | 261000
30000000 | 369000
275000 8000
0000000 | 407000

RC(msec)

Implementation studies:
retry cost under single shared object

4000

ECM '
3500 | RCM = T 1 -
LCM/EDF | ‘ 1
3000 b LCM/RMA i . T - 4 tasks
PNF/EDF | *
o PNERMA L Ly 1 shared object per transaction
2000 F LE/RMA i ; i
i ; CMs and lock-free
1500 | - T ‘ ! .
| | | |
1000 3 i * .
H t 180 T—
500 | !
: i 160 RCM ===
0 gl e B I - Sy Szt LCM/EDF
140 F LCM/RMA oo
500 . : . , . . , : o | PNF/EDF
%, %, %, %, %, %, %, %, %, %, PNF/RMA -
"30@ "30@ “fo@ -506 “?Q@ "-50@ "fod 'd)oe ‘d)od
total,max,min

Retry cost measured by varying
max transaction length,

min transaction length, and o L
transactions: (total, max, min) T T T N T)

total,max,min

RC(msec)

Implementation studies:
retry cost under multiple shared objects

140

120 |

100 |

ECM

LCM/EDF
LCM/RMA
PNF/EDF

PNF/RMA -

4 tasks
20 shared objects per transaction
40% write

7 %0 %o %o % % %o So %
o o %o Jo o o 90 % %
=) o 5) = 5 < 8
total,max,min

160

140
120
100 |-

80

40

4 tasks
40 shared objects per transaction
80% write

60 |

LCM/EDF
PNF/EDF
PNF/RMA -

D 1
: |
; !
; |
P B — M ———
4 "‘. \\‘
P ta
£ Vb3 —
N 3

total,max,min

Conclusions

o Presented a real-time STM contention manager: PNF
o Allows multiple objects per transaction; avoids transitive retry
o Bounded retry costs and response times

o Schedulability comparisons established PNF’s superiority

o Implementation confirmed PNF’s superiority

o Allows reaping STM’s programmability and composability
advantages for a broader range than previously possible

o On the negative side:
o Relatively complex implementation
o Greater priority inversion
o Must declare all transactional objects at transaction-start

FBLT: A Real-Time Contention Manager with Improved Real-Time
Schedulability, M. EI-Shambakey and B. Ravindran, DATE 2013

