
2/23/2013 1

Yazhi Huang
Mengying Zhao

Chun Jason Xue
Department of Computer Science

City University of Hong Kong

WUCC: Joint WCET and Update Conscious
Compilation for Cyber Physical Systems

2/23/2013 2

• Introduction

• Motivational example

• Problem analysis

• The proposed algorithm

• Experimental results

• Conclusions

Outline

2/23/2013 3

Introduction

Cyber physical systems
– Usually real-time systems
– A number of sensor nodes
– Sensor nodes : powered by batteries, with preloaded code
– Code update: wireless communication, energy consuming

2/23/2013 4

Introduction

Challenges of cyber physical systems

– Code Update Problem:
– Update of preloaded code on remote sensor

nodes powered by batteries is extremely
energy consuming.

– WCET problem:
– CPSs are often real-time embedded systems.

Therefore, worst-case execution time (WCET) is
an important real-time constraint

Reduce
update

Reduce
WCET

2/23/2013 5

Previous works

– Code Update Problem: Li et al. proposed an update
conscious compilation technique to improve the code similarity for
energy consumption minimization in the wireless sensor network.
(“UCC: update conscious compilation for energy efficiency in wireless sensor network”
in PLDI 07)

– WCET problem: Falk presented a WCET-aware register
allocator to avoid spill code generation along the critical path of a
program for WCET reduction in real-time embedded systems.
(“WCET-aware register allocation based on graph coloring” in DAC 09)

– Limitations:
– UCC: Too many MOVE insertion Increase in WCET
– WCET-aware RA: Increase in code difference
– Our goal is to reduce WCET and code difference

simultaneously for real-time cyber physical systems

2/23/2013 6

Motivational example

– BB1 is on WCEP
while BB2 is not

– (a) (d) are original
code

– (b) (e) are changed
code

– (c) (f) are update
conscious
compilation solution

– With UCC
technique, code
similarity is
improved by
inserting necessary
MOVE operations

a R1

(1) a := ... ;

(5) ... := a ;

(8) b := ... ;

(12) ... := a ;

(b)

(20) ... := b ;

X 1000

b R1 b R1

(1) a := ... ;

(5) ... := a ;

MOVE R2, R1

(8) b := ... ;

(12) ... := a ;

(c)

(20) ... := b ;

X 1000

a R1

b R1

c R3

d R3 d R3 d R3

2/23/2013 7

– If implementing WCET-
aware technique without
considering code update,
code similarity benefit is
0% (i.e. code difference is
100%)

– If only implementing UCC,
relative code difference is
0%, but relative WCET
increment is 100%

– The proposed technique
only implements UCC for
WCEP block BB1, but can
improve most of code
similarity, at 75% in this
example

– By selecting appropriate basic blocks for
UCC, most of code similarity may be achieved
and at the same time have less negative
effect on a program’s WCET

Motivational example

Approach Negative WCET effect Code diff Energy saving

UCC [2]
Proposed
WCET [1]

100%
0% - 10%

0%

0%
25%
100%

100%
75%
0%

http://www.google.com/imgres?hl=zh-CN&biw=1843&bih=873&gbv=2&tbm=isch&tbnid=wjMfK1W5DgmHqM:&imgrefurl=http://www.reddeng.com/reddeng.asp%3Fk%3D%25B5%25E7%25B5%25C6%26gs%3D0&docid=piRKhi0HggNCpM&imgurl=http://www.reddeng.com/img/2d00hg/a407c4aef0.jpg&w=150&h=150&ei=Wte8T5HDFcmViQep9s3iDw&zoom=1

2/23/2013 8

Overview

– CFG in IR form as input
– WCET analysis and code similarity analysis will be conducted

simultaneously during the compilation process
– Each time select an appropriate CFG node
– Update-conscious compilation technique is implemented in the

selected node
– New WCEP information is calculated and the new version code is

used for next iteration of WCET and code similarity analysis
– This iteration continues until a balanced solution is obtained

CFG
In IR

WCET & Code
Similarity Analysis

If the solution can be further improved

Node Update
Solution

Node
Selection

WCEP
Update

2/23/2013 9

• Strategy for CFG node selection

Problem analysis

– Principle:
• improve more node similarity
• have zero or minimal negative effect on WCEP

– Benefit:
• processing this type of nodes first will leave more space

for processing the rest of nodes
• more nodes have potential to be selected and

processed
– Propose:

• Therefore we propose to mark a less frequently
executed node on non-WCEP with more number of
executions and less variables to be updated for
processing first

2/23/2013 10

• Update candidate set during node selection

Problem analysis

– WCEP change:
• The candidate node set during node selection might change due

to the potential change of WCEP after a block is processed
– Candidate set re-construction:

• If WCEP has changed, candidate set will be re-constructed

(a)

entry

exit

b5

b6

b1

b2

b4

b3

(b)

entry

exit

b5

b6

b1

b2

b4

b3

– In the figure, execution
path in bold is assumed to
be the current WCEP

– In figure (a), non-WCEP
node b3 is select

– In figure (b), candidate set
is re-constructed, b4
becomes candidate and is
selected

2/23/2013 11

• A priority model for CFG node selection

Problem analysis

– Suggests : the more code similarity profit per unit potential
increase in WCEP a node can bring, the higher priority it
should be given

– Benefit : less negative effect on WCET and more energy
saving benefit

– Mi : the number of Move operations that a node i requires.
– Freqi : the execution frequency of a node i.
– CSi : the code similarity benefit

2/23/2013 12

Algorithm

– Set a default WCET increment counter
– Calculate WCEP
– Calculate priority
– Select a node based on priority
– Update conscious compilation technique is

applied in the selected node
– Update counter
– Repeat above steps as long as WCET is less

than a given threshold

2/23/2013 13

Experimental results

• WCET Versus Code Similarity

– With a threshold of 10% increase in WCET, code similarity: 70% --
85%. On average 76% of code similarity is achieved compared to
UCC

– 64% of code similarity can be achieved with 5% threshold while 84%
benefit with 15% threshold

– To summarize, with a small increase in WCET, WUCC can
effectively achieve most of code similarity

2/23/2013 14

Experimental results

• Code difference among three approaches, WCET-aware
technique as comparison base

– With remarkable WCET benefit, code difference under WUCC is
just a little larger than UCC

2/23/2013 15

• We propose a compiler level optimization, joint
WCET and update conscious compilation, for
WCET and code difference minimization in cyber
physical systems

• A novel CFG node selection heuristic is proposed,
where a priority based model is built by considering
a node’s code similarity benefit, MOVE operation
requirement, and the execution frequency

• We formulate the target problem and implement a
greedy algorithm to achieve a balanced result

Conclusions

2/23/2013 16

Thank you!

