A 12.5Gb/s Non-Contact Multi Drop Bus System with Impedance-Matched Transmission Line Couplers and Dicode Partial-Response Channel Transceivers

<u>Atsutake Kosuge,</u> W. Mizuhara, N. Miura, M. Taguchi H. Ishikuro, and T. Kuroda

Keio University, Japan

Background

Point-to-Point

- High link speed (>20Gb/s/ch)
- Eass aggregated bandwidth
- ⊗ Wiring complexity

Multi-Drop Bus

- ☺ Simple architecture
- Carge aggregated bandwidth
- ℬ Bad signal integrity
- ⊗ Low link speed (~4.8Gb/s/ch)

Proposed Non Contact Multi Drop Bus System

- Impedance-Matched Transmission Line Coupler (IM-TLC) allows impedance uniformity.
 - Wide-bandwidth, less reflection.
- Dicode partial Channel Transceiver enhances the operating speed.
 - In conventional Hysteresis Receiver, latching settling time limits the operating speed.

Impedance-Matched Transmission Line Coupler (IM-TLC)

Partial Response Signaling with TLC TLC has an ideal Dicode 1-z⁻¹ characteristics. 1/(1-z⁻¹) filter cancels out channel characteristics.

Measurement Setup and Results

- Impedance-Matched TLC realizes good signal integrity.
- Dicode Partial Response Channel Transceiver enhances the receiver operation speed
- Implemented multi-drop bus system reached 12.5 Gb/s.

