Poster ID : 1D-4

A 40-nm 0.5-V 12.9-μW/MHz 8T SRAM Using Low-Power Disturb Mitigation Technique

Shusuke Yoshimoto1, Masaharu Terada1,
Shunsuke Okumura1, Toshikazu Suzuki2,
Shinji Miyano2, Hiroshi Kawaguchi1,
and Masahiko Yoshimoto1

1Kobe University, Kobe, Japan
2Semiconductor Technology Academic Research Center (STARC), Yokohama, Japan
Increasing memory size → Low-voltage and low-power SRAM is required.
Conventional write back technique

- Dedicated read port eliminates read disturb
- Write back technique eliminates write disturb

Charging write bitline degrades power efficiency
Proposed disturb mitigation technique

1. Low-swing bitline driver (LSBD)
2. Precharge-less equalizer

Low-swing write back
Active energy reduction on WBLs

- WBL swing depends on a process corner

- 60% active energy reduction on WBLs
Measurement results

Proven
512Kb
(16Kb × 32)
Disturb mitigation

Conv.
512Kb
(16Kb × 32)
Write back

Active write energy per cycle [pJ]

0 1 2 3 4 5 6 7 8 9 10
VDD [V]

1.52 pJ
3.66 pJ
-59.4%

Prop.

Conv.

40-nm 512Kb 8T SRAM test chip

59.4% active energy reduction in total