
MIXSyn: An Efficient Logic Synthesis
Methodology for Mixed XOR-AND/OR

Dominated Circuits
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Integrated Circuits Logic Design

• Integrated circuits are designed using logic synthesis techniques.

Y<=A XOR B;

W<=C AND A;

K<=Y OR W;

Q<=K XOR C;

   .....

• Established methods for AND/OR-dominated circuits (MIS, SIS, ..).

• Novel heuristics for XOR-dominated circuits (BDS, FLDS, ..).

• Real-life designs contain both AND/ORs and XORs intertwined.
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Synthesis of XOR-AND/OR Dominated Circuits

• Open question:

How to efficiently synthesize XOR-AND/OR dominated circuits?

• We will address the question during this talk:

MIXSyn: a novel synthesis methodology
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(Brief) Introduction on Logic Synthesis

Logic (combinational) synthesis:

logic optimization ⇒ technology mapping

• Logic optimization:

Compacts the original logic
circuit size.
Original techniques exploited
AND/OR representations.
New techniques take
advantage of XOR operators.

• Technology mapping:

Transposes the logic circuit
in a netlist of gates.
Usually targets a library of
standard cells.
Two main operations: cell
matching and selection.
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Why Change Approach to Logic Synthesis?

Practical logic circuits contain AND/ORs and XORs intertwined

• Logic optimization:
Current heuristics efficiently
manipulates

[1] AND/OR operations
[2] XOR operations

Which method to manipulate
both AND/OR and XOR?

XOR-Optimization?

AND/OR-Optimization?

or

• Technology mapping:
Standard cell libraries have

At most 5/6 inputs.
100s of gate functions.

However, with 5 inputs, the
total number of different
functions is 232 >> 100s.

Stack limit: max 5 inputs

Logic design flexibility:

> 4 BILLIONS functions

   Fully flexible
Standard cell library
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MIXSyn Synthesis Flow 1/2

MIXSyn efficiently optimizes and maps XOR-AND/OR dominated circuits.

MIXSyn

Hybrid optimization

⇓
Library-free technology mapping
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MIXSyn Synthesis Flow 2/2

MIXSyn

Hybrid optimization

⇓
Library-free technology mapping

• Hybrid optimization
Efficiently manipulates both
AND/OR and XOR ops.
Two-step procedure.

• Library-free technology
mapping

Exploits all 22n

functions
realizable in a n-input gate.
No standard cell library.
New XOR-AND/OR
composed gates.

MIXSyn: augmented design flexibility
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MIXSyn Steps

MIXSyn

Hybrid optimization

⇓
Library-free technology mapping
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Hybrid Logic Optimization: Procedure

XOR-Optimization?

AND/OR-Optimization?

or Hybrid-Optimization

Answer:

Procedure steps:

Algorithm 1 Hybrid Logic Optimization

INPUT: Input Boolean Network (IBN)
OUTPUT: Optimized Boolean Network (OBN)

XOR-extraction (phase-α).
XOR-splitting (phase-β).
Controllability don’t care computation (phase-χ).
AND/OR-minimization (phase-ψ).
XOR-merging (ω).
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Hybrid Logic Optimization: Example

Target function: f = ab+ bc+ ab+ ca

Traditional optimization techniques:

AND/OR optimization: f = ab+ ab+ c(a+ b)

XOR optimization: f = bc+ (a� b) + ca
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Hybrid Logic Optimization: Example

f = ab+ bc+ ab+ ca

	  y=a’	  

w=ca	  

z=ab	  

v=bc	  

x=b’	  

	  b	  

	  c	  

	  a	  
s=xy	  

f=s+w+z+v	  

IBN	  
	  

w=ca	  

v=bc	  

	  b	  

	  c	  

	  a	  
x=a¤b	  

f=x+w+v	  

XOBN	  
	  

	  b	  

	  a	  
x=a¤b	  

FBN	  
	  

w=ca	  

v=bc	  

	  b	  

	  c	  

	  a	  

f=x+w+v	  

	  x	  

CDCin(x,a,b)={101,110,011,000}	  

SBN	  
	  

	  c	  

f=x+c	  

	  x	  

AOOBN	  
	  

	  b	  

	  a	   x=a¤b	  

	  c	  

f=x+c	  

OBN	  
	  

Split	  

β	  

XO
R-‐
op

t	  

α	  

AN
D/

O
R-‐
op

t	  

ψ	  

M
er
ge
	  

	  

ω	  

Split	  
β	  

Merge	  
	  

ω	  
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f = (a� b) + c

Minimal representation
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MIXSyn Steps

MIXSyn

Hybrid optimization

⇓
Library-free technology mapping
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Library-free Technology Mapping: Opportunity

• Conventional approach: Standard cell based technology mapping.

Bounded by the richness of the given library.

• Novel opportunity: Build on the fly logic gates at transistor level.

Implement the most convenient function: No more library bounds.
Exploit non-traditional gates: XOR-AND/OR expressions.
Selectively insert inverters: Maximize logic sharing.
Challenges for physical synthesis and timing characterization.
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Library-free Technology Mapping: Procedure

Procedure steps:
Algorithm 7 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in
OUTPUT: Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase-α).
Forest of trees decomposition (phase-α).
Area efficient greedy tree decomposition (phase-β).
for all decomposed sub-trees do

Inverter propagation (phase-ω).
Best polarity evaluation (phase-ω).
Gate building (phase-ω).

end for
17/29
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Library-free Technology Mapping: Example

f = (a� b) + c

XOR

INV

OR

A

B

C

A

B

C

A

C

B

C

A

B

A

B

A

B

A

B

C

INV

XOR

OR

A

B

C

INV

XOR

OR

A

B

C

XOR

AND

A

C

INV

B

PD graph PD graph

output INV

Inverters
propagation

Best polarity
evaluation

Gate building
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Minimum transistor count realization in static style.
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Emerging XOR-efficient Devices

• We benchmark MIXSyn with:
• [1] Standard CMOS.
• [2] Emerging XOR-efficient device: double-gate ambipolar FETs.

Electrically controllable polarity trough polarity gate (PG).
PG=1 ⇒ n-type, PG=0 ⇒ p-type.
Fabricated in SiNW1, graphene and carbon nanotubes.

A XNOR B

PG

CG

PG=1

PG=0 A

B B’

A’

A

B’ B

A’

a) b)
p-typeCG

n-typeCG

Biconditional logic connective embedded (XNOR �).
Compact XOR/XNOR-based logic gates.

1: De Marchi et al., IEDM 2012
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CMOS Synthesis Experiments

Target technology: CMOS

Tools ranking (transistor count)

Benchmarks MIXSyn DC BDS ABC

(1st) (2nd) (3rd) (4th)

Full Set 4931 5433 6016 6063

Benchmarks MIXSyn DC BDS ABC

(1st) (2nd) (3rd) (4th)

XOR-int. 4129 4174 4749 4959
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CMOS Synthesis Experiments

Target technology: CMOS

Tools ranking (transistor count)

Benchmarks MIXSyn DC BDS ABC

(1st) (2nd) (3rd) (4th)

Full Set 4931 +10.2% +22.0% +23.0%

Benchmarks MIXSyn DC BDS ABC

(1st) (2nd) (3rd) (4th)

XOR-int. 4129 +1.1% +15.0% +20.1%
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Ambipolar Synthesis Experiments

Target technology: DG Ambipolar FETs

Tools ranking (transistor count)

Benchmarks MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

Full Set 4204 4965 5312 5346

Benchmarks MIXSyn DC BDS ABC

(1st) (2nd) (3rd) (4th)

XOR-int. 3136 3603 3944 3958
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Ambipolar Synthesis Experiments

Target technology: DG Ambipolar FETs

Tools ranking (transistor count)

Benchmarks MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)
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Full Set 4204 +18.1% +26.3% +27.2%

Benchmarks MIXSyn DC BDS ABC

(1st) (2nd) (3rd) (4th)
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Ambipolar vs. CMOS Synthesis Experiments

MIXSyn further harnesses ambipolar technology.

Tools ranking (transistor count)

Technology MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

CMOS 4931 5433 6063 6016
Ambipolar 4204 4965 5312 5346

25/29



Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar vs. CMOS Synthesis Experiments

MIXSyn further harnesses ambipolar technology.

Tools ranking (transistor count)

Technology MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

CMOS 4931 5433 6063 6016
Ambipolar 4204 4965 5312 5346

25/29



Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar vs. CMOS Synthesis Experiments

MIXSyn further harnesses ambipolar technology.

Tools ranking (transistor count)

Technology MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

CMOS 4931 5433 6063 6016
Ambipolar -14.7% 4965 5312 5346

25/29



Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar vs. CMOS Synthesis Experiments

MIXSyn further harnesses ambipolar technology.

Tools ranking (transistor count)

Technology MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

CMOS 4931 5433 6063 6016
Ambipolar -14.7% 4965 5312 5346

25/29



Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar vs. CMOS Synthesis Experiments

MIXSyn further harnesses ambipolar technology.

Tools ranking (transistor count)

Technology MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

CMOS 4931 5433 6063 6016
Ambipolar -14.7% -8.6% -12.4% -11.1%
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Timing: Logic Depth Results

Insight about timing efficiency

Tools ranking (logic levels)

Technology DC MIXSyn ABC BDS

(1st) (2nd) (3rd) (4th)

CMOS 33.2 34.5 36.7 38.1

Technology MIXSyn DC ABC BDS

(1st) (2nd) (3rd) (4th)

Ambipolar 22.8 23.9 25.6 26.1
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Conclusions

• We presented MIXSyn: A novel logic synthesis methodology.

• MIXSyn targets XOR-AND/OR dominated circuits.

• MIXSyn: hybrid optimization + library-free mapping.

• MIXSyn produces CMOS efficient circuits:
Transistor count: -10.2% w.r.t. Design Compiler.
Logic levels: +3.9% w.r.t. Design Compiler.

• MIXSyn harnesses DG ambipolar devices expressive power:
Transistor count: -18.1% w.r.t. Design Compiler.
Logic levels: -4.8% w.r.t. Design Compiler.
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Questions?

Thank you for your attention.

29/29


	Introduction and Motivation
	MIXSyn
	Experimental Results
	Conclusions

