MIXSyn: An Efficient Logic Synthesis Methodology for Mixed XOR-AND/OR Dominated Circuits

Luca Amarú, Pierre-Emmanuel Gaillardon, Giovanni De Micheli

Integrated Systems Laboratory (LSI), EPFL, Switzerland

Wednesday, January 23rd, 2013

Integrated Circuits Logic Design

• Integrated circuits are designed using logic synthesis techniques.

- Established methods for AND/OR-dominated circuits (MIS, SIS, ..).
- Novel heuristics for XOR-dominated circuits (BDS, FLDS, ..).
- Real-life designs contain both AND/ORs and XORs intertwined.

Synthesis of XOR-AND/OR Dominated Circuits

• Open question:

How to efficiently synthesize XOR-AND/OR dominated circuits?

• We will address the question during this talk:

MIXSyn: a novel synthesis methodology

Outline

- 1 Introduction and Motivation
- Ø MIXSyn
- **3** Experimental Results
- **4** Conclusions

1 Introduction and Motivation

2 MIXSyn

- **B** Experimental Results
- **4** Conclusions

(Brief) Introduction on Logic Synthesis

Logic (combinational) synthesis:

logic optimization \Rightarrow technology mapping

• Logic optimization:

- Compacts the original logic circuit size.
- Original techniques exploited AND/OR representations.
- New techniques take advantage of XOR operators.

• Technology mapping:

- Transposes the logic circuit in a netlist of gates.
- Usually targets a library of standard cells.
- Two main operations: cell matching and selection.

Why Change Approach to Logic Synthesis?

 $\label{eq:practical logic circuits contain AND/ORs and XORs intertwined$

- Logic optimization:
 - Current heuristics efficiently manipulates
 - [1] AND/OR operations
 - [2] XOR operations
 - Which method to manipulate both AND/OR and XOR?

- Technology mapping:
 - Standard cell libraries have
 - At most 5/6 inputs.
 - 100s of gate functions.
 - However, with 5 inputs, the total number of different functions is 2³² >> 100s.

Fully flexible Standard cell library

Stack limit: max 5 inputs

Logic design flexibility:

> 4 BILLIONS functions

1 Introduction and Motivation

Ø MIXSyn

B Experimental Results

4 Conclusions

Introduction and Motivation MIXSyn Experimental Results Conclusions

MIXSyn Synthesis Flow 1/2

MIXSyn efficiently optimizes and maps XOR-AND/OR dominated circuits.

Introduction and Motivation MIXSyn Experimental Results Conclusions

MIXSyn Synthesis Flow 2/2

• Hybrid optimization

- Efficiently manipulates both AND/OR and XOR ops.
- Two-step procedure.
- Library-free technology mapping
 - Exploits all 2^{2ⁿ} functions realizable in a *n*-input gate.
 - No standard cell library.
 - New XOR-AND/OR composed gates.

MIXSyn: augmented design flexibility

MIXSyn

Hybrid optimization

Library-free technology mapping

Algorithm 1 Hybrid Logic Optimization

INPUT: Input Boolean Network (*IBN*) **OUTPUT:** Optimized Boolean Network (*OBN*)

XOR-extraction (phase- α).

XOR-splitting (phase- β).

Controllability don't care computation (phase- χ).

AND/OR-minimization (phase- ψ).

XOR-merging (ω).

Algorithm 2 Hybrid Logic Optimization

INPUT: Input Boolean Network (*IBN*)

OUTPUT: Optimized Boolean Network (OBN)

XOR-extraction (phase- α).

XOR-splitting (phase- β).

Controllability don't care computation (phase- χ).

AND/OR-minimization (phase- $oldsymbol{\psi}$).

XOR-merging (ω).

Algorithm 3 Hybrid Logic Optimization

INPUT: Input Boolean Network (IBN)

OUTPUT: Optimized Boolean Network (*OBN*)

XOR-extraction (phase-lpha).

XOR-splitting (phase- β).

Controllability don't care computation (phase- χ). AND/OR-minimization (phase- ψ). XOR-merging (ω).

Algorithm 4 Hybrid Logic Optimization

INPUT: Input Boolean Network (*IBN*)

OUTPUT: Optimized Boolean Network (OBN)

XOR-extraction (phase- α).

XOR-splitting (phase- β).

Controllability don't care computation (phase- χ).

AND/OR-minimization (phase- $oldsymbol{\psi}$).

XOR-merging ($oldsymbol{\omega}$).

Algorithm 5 Hybrid Logic Optimization

INPUT: Input Boolean Network (*IBN*)

OUTPUT: Optimized Boolean Network (OBN)

XOR-extraction (phase- α).

XOR-splitting (phase- β).

Controllability don't care computation (phase- χ).

AND/OR-minimization (phase- ψ).

XOR-merging (ω).

Algorithm 6 Hybrid Logic Optimization

INPUT: Input Boolean Network (*IBN*)

OUTPUT: Optimized Boolean Network (OBN)

XOR-extraction (phase- α).

XOR-splitting (phase- β).

Controllability don't care computation (phase- χ).

AND/OR-minimization (phase- ψ).

XOR-merging (ω).

Target function:

$$f = ab + bc + \overline{a}\overline{b} + ca$$

Traditional optimization techniques:

AND/OR optimization:

$$f = ab + \overline{a}\overline{b} + c(a+b)$$

XOR optimization:

$$f = bc + (a \odot b) + ca$$

$$f=ab+bc+\overline{a}\overline{b}+ca$$

MIXSyn Steps

MIXSyn

Hybrid optimization

Library-free technology mapping

• Conventional approach: Standard cell based technology mapping.

Bounded by the richness of the given library.

- Implement the most convenient function: No more library bounds.
- Exploit non-traditional gates: XOR-AND/OR expressions.
- Selectively insert inverters: Maximize logic sharing.
- Challenges for physical synthesis and timing characterization.

• Conventional approach: Standard cell based technology mapping.

Bounded by the richness of the given library.

- Implement the most convenient function: No more library bounds.
- Exploit non-traditional gates: XOR-AND/OR expressions.
- Selectively insert inverters: Maximize logic sharing.
- Challenges for physical synthesis and timing characterization.

• Conventional approach: Standard cell based technology mapping.

Bounded by the richness of the given library.

- Implement the most convenient function: No more library bounds.
- Exploit non-traditional gates: XOR-AND/OR expressions.
- Selectively insert inverters: Maximize logic sharing.
- Challenges for physical synthesis and timing characterization.

• Conventional approach: Standard cell based technology mapping.

Bounded by the richness of the given library.

- Implement the most convenient function: No more library bounds.
- Exploit non-traditional gates: XOR-AND/OR expressions.
- Selectively insert inverters: Maximize logic sharing.
- Challenges for physical synthesis and timing characterization.

• Conventional approach: Standard cell based technology mapping.

Bounded by the richness of the given library.

- Implement the most convenient function: No more library bounds.
- Exploit non-traditional gates: XOR-AND/OR expressions.
- Selectively insert inverters: Maximize logic sharing.
- Challenges for physical synthesis and timing characterization.

Algorithm 7 Library-free Technology Mapping **INPUT:** Optimized Boolean Network (*OBN*), maximum gate fan-in **OUTPUT:** Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase- α) Forest of trees decomposition (phase- α). Area efficient greedy tree decomposition (phase- β). **for all** decomposed sub-trees **do**

Inverter propagation (phase- ω). Best polarity evaluation (phase- ω

Gate building (phase- ω).

Algorithm 8 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase-lpha).

Forest of trees decomposition (phase-lpha).

Area efficient greedy tree decomposition (phase- β).

for all decomposed sub-trees do

Inverter propagation (phase- ω).

Best polarity evaluation (phase- ω).

Gate building (phase- ω).

Algorithm 9 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

```
Subject-graph creation (AND, OR, XOR, INV) (phase-\alpha).
Forest of trees decomposition (phase-\alpha).
```

Area efficient greedy tree decomposition (phase-eta).

for all decomposed sub-trees do

Inverter propagation (phase- ω).

Best polarity evaluation (phase- ω).

Gate building (phase- ω).

Algorithm 10 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

```
Subject-graph creation (AND, OR, XOR, INV) (phase-lpha).
```

Forest of trees decomposition (phase- α).

Area efficient greedy tree decomposition (phase- β).

```
for all decomposed sub-trees do
```

Inverter propagation (phase- $oldsymbol{\omega}$).

Best polarity evaluation (phase- ω)

Gate building (phase- ω).

Algorithm 11 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase-lpha).

Forest of trees decomposition (phase- α).

Area efficient greedy tree decomposition (phase- β).

for all decomposed sub-trees do

Inverter propagation (phase- ω). Best polarity evaluation (phase- ω). Gate building (phase- ω).
Library-free Technology Mapping: Procedure

Algorithm 12 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase-lpha).

Forest of trees decomposition (phase- α).

Area efficient greedy tree decomposition (phase- β).

for all decomposed sub-trees do

Inverter propagation (phase- ω).

Best polarity evaluation (phase- ω).

Gate building (phase- ω).

end for

Library-free Technology Mapping: Procedure

Algorithm 13 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase-lpha).

Forest of trees decomposition (phase- α).

Area efficient greedy tree decomposition (phase- β).

for all decomposed sub-trees do

Inverter propagation (phase- ω).

Best polarity evaluation (phase- ω).

Gate building (phase- ω).

end for

Library-free Technology Mapping: Procedure

Algorithm 14 Library-free Technology Mapping

INPUT: Optimized Boolean Network (OBN), maximum gate fan-in **OUTPUT:** Network of gates

Subject-graph creation (AND, OR, XOR, INV) (phase-lpha).

Forest of trees decomposition (phase- α).

Area efficient greedy tree decomposition (phase- β).

for all decomposed sub-trees do

Inverter propagation (phase- ω).

Best polarity evaluation (phase- ω).

Gate building (phase- ω).

end for

$$f = (a \odot b) + c$$

Minimum transistor count realization in static style.

1 Introduction and Motivation

MIXSyn

3 Experimental Results

4 Conclusions

State of the art tools we compare with:

Logic circuit benchmarks: MCNC suite.
Comparison metric: Transistor count (area-efficiency).

State of the art tools we compare with:

- Logic circuit benchmarks: MCNC suite.
- Comparison metric: **Transistor count** (area-efficiency).

State of the art tools we compare with:

- Logic circuit benchmarks: MCNC suite.
- Comparison metric: Transistor count (area-efficiency).

Emerging XOR-efficient Devices

- We benchmark MIXSyn with:
- [1] Standard CMOS.
- [2] Emerging XOR-efficient device: **double-gate ambipolar FETs**.
 - Electrically controllable polarity trough polarity gate (PG).
 - $PG=1 \Rightarrow n$ -type, $PG=0 \Rightarrow p$ -type.
 - Fabricated in SiNW¹, graphene and carbon nanotubes.

- *Biconditional* logic connective embedded (XNOR ⊙).
- Compact XOR/XNOR-based logic gates.

1: De Marchi et al., IEDM 2012

Target technology: CMOS

Target technology: CMOS

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
Full Set	4931	5433	6016	6063

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	4129	4174	4749	4959

Target technology: CMOS

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
Full Set	4931	5433	6016	6063

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	4129	4174	4749	4959

CMOS Synthesis Experiments Target technology: CMOS

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	4129	4174	4749	4959

CMOS Synthesis Experiments Target technology: CMOS

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	4129	4174	4749	4959

Target technology: CMOS

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
Full Set	4931	+10.2%	+22.0%	+23.0%

Ambipolar Synthesis Experiments Target technology: DG Ambipolar FETs

Ambipolar Synthesis Experiments

Target technology: DG Ambipolar FETs

Benchmarks	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Full Set	4204	4965	5312	5346

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	3136	3603	3944	3958

Ambipolar Synthesis Experiments

Target technology: DG Ambipolar FETs

Benchmarks	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Full Set	4204	4965	5312	5346

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	3136	3603	3944	3958

Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar Synthesis Experiments Target technology: DG Ambipolar FETs

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	3136	3603	3944	3958

Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar Synthesis Experiments Target technology: DG Ambipolar FETs

Benchmarks	MIXSyn	DC	BDS	ABC
	(1st)	(2nd)	(3rd)	(4th)
XOR-int.	3136	3603	3944	3958

Introduction and Motivation MIXSyn Experimental Results Conclusions

Ambipolar Synthesis Experiments Target technology: DG Ambipolar FETs

Benchmarks	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Full Set	4204	+18.1%	+26.3%	+27.2%

MIXSyn further harnesses ambipolar technology.

Technology				BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	4931	5433	6063	6016
Ambipolar				

MIXSyn further harnesses ambipolar technology.

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	4931	5433	6063	6016
Ambipolar	4204	4965	5312	5346

MIXSyn further harnesses ambipolar technology.

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	4931	5433	6063	6016
Ambipolar	-14.7%	4965	5312	5346

MIXSyn further harnesses ambipolar technology.

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	4931	5433	6063	6016
Ambipolar	-14.7%	4965	5312	5346

MIXSyn further harnesses ambipolar technology.

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	4931	5433	6063	6016
Ambipolar	-14.7%	-8.6%	-12.4%	-11.1%

Insight about timing efficiency

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	34.5	36.7	38.1

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	34.5	36.7	38.1

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	34.5	36.7	38.1

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1
Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	36.7	38.1

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	36.7	38.1

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	+10.5%	+14.7%

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	+10.5%	+14.7%

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	+10.5%	+14.7%

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	+10.5%	+14.7%

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	23.9	25.6	26.1

Insight about timing efficiency

Technology	DC	MIXSyn	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
CMOS	33.2	+3.9%	+10.5%	+14.7%

Technology	MIXSyn	DC	ABC	BDS
	(1st)	(2nd)	(3rd)	(4th)
Ambipolar	22.8	+4.8%	+12.2%	+14.4%

1 Introduction and Motivation

2 MIXSyn

3 Experimental Results

4 Conclusions

Conclusions

- We presented MIXSyn: A novel logic synthesis methodology.
- MIXSyn targets XOR-AND/OR dominated circuits.
- MIXSyn: hybrid optimization + library-free mapping.
- MIXSyn produces CMOS efficient circuits:
 - Transistor count: -10.2% w.r.t. Design Compiler.
 - Logic levels: +3.9% w.r.t. Design Compiler.
- MIXSyn harnesses DG ambipolar devices expressive power:
 - Transistor count: -18.1% w.r.t. Design Compiler.
 - Logic levels: -4.8% w.r.t. Design Compiler.

Questions?

Thank you for your attention.