
Chen Wang and Weikang Qian

University of Michigan-SJTU Joint Institute

Shanghai Jiao Tong University

Optimizing Multi-level Combinational

Circuits for Generating Random Bits

Random Bits

 Also known as a Bernoulli random variable

 A special discrete random variable takes 1 with
probability p and 0 with probability 1−p.

 Use of random bits

 Cryptography

 Monte Carlo simulation

 Testing of IC chips

 Weighted random testing

2

𝑃 𝑋 =
𝑝, if 𝑋 = 1
1 − 𝑝, if 𝑋 = 0

Random Bits Generation

 Pseudorandom number generators (PRNGs)

 Produce deterministic sequences

 Require a large amount of hardware

Linear Feedback Shift Register

3

Random Bits Generation

 Truly random source, such as thermal noise

 Hard to control the output probability

 A post-processing unit is needed

 One post-processing method is to synthesize
combinational logic to transform source
probabilities into target probabilities.

4

S = {p1, p2, p3 , p4 , p5, p6}

Random

Sources

Logic

Circuit

q*

q*

Source Probability Set Target Probability

Basic Problem

5

p1

p2

p5

Synthesize a logic circuit that takes input probabilities
from S and outputs the target probability.

Characteristics of the Problem

6

 All the inputs from set S are independent.

 Each probability in the set S is used at most once.

 The output probability usually cannot be realized
exactly .

 We find the closest implementation.

Logic

Circuit
p2

p5

p1

q ≈ q*

Previous Method

 Qian et al. “Transforming probabilities with
combinational logic.”

 A greedy method is applied to incrementally build the
circuit .

 However, the synthesized circuit is in the form of a
gate chain, not satisfactory in depth and output
accuracy.

q

p1

p2

p3

p4

AND

OR

AND

AND

p5

7

Our Contribution

 A new algorithm for synthesizing combinational
circuits to generate random bits from some input
probabilities:

 Expand the search space to include tree-style circuits

 The circuits synthesized by our algorithm have
much smaller depths and output errors.

 Apply linearity property to simplify the problem.

 Apply iterative search method to find the best
solution.

8

Probabilistic Computation with Basic

Gates

Inverter

OR gate

AND gate

p 1 − p

p1

p2

p1

p2

p1 ∙ p2

p1 + p2 − p1 ∙ p2

9

Main Procedure of Our Method

10

 Suppose |S| = n. Synthesize a series of circuits C1 ,…,
Cn.

 Circuit Ck has k inputs.

 The best one of C1,…,Cn is chosen.

Example

11

Error = 0.01

Error = 0.0006

Error = 0.0041

Smallest !

Error = 0.0027

S = {0.07, 0.08, 0.4, 0.63}; Target q* = 0.59

Constructing Ck

 Circuit Ck is built from Ck-1 by replacing one of Ck-1’s

inputs by a new gate with two input probabilities.

 Other part of Ck-1 is kept unchanged.

 All inputs of Ck-1 are examined to find the best place
to replace.

12

AND
OR

q* = 0.59p1 = 0.63
q = 0.5894

p2 = 0.07

p3 = 0.08

Source probability set
S = {0.07, 0.08, 0.3, 0.4, 0.63}; q* = 0.59

C3:

Example of Building C4 from C3

13

AND
ORp2 = 0.07

p3 = 0.08

q* = 0.59

What

gate ?

?

?

Chosen from
S’ = {0.3, 0.4,

0.63}

Determine the Added Gate Type and its

Inputs

 For each input, determine the optimal gate type and
its input probabilities.

 Achieved by two steps:

1. Calculate the ideal probability for the input.

2. Choose the gate type and its two inputs to make the
output of the gate be closest to the ideal probability.

14

Ideal Probability pi
*

AND
OR

p1 = 0.63

p2 = 0.07
q* = 0.59

What

gate ?

?

?

Ideal probability p3
*:

If p3 = p3
, then the output probability q = q.

p3 = p3
*

q = q*

15

Linearity Property of Probabilistic Logic

Computation

combinational

logic

X2

X1

Xn

Independent

Random

Bits
Y

Random

Bit

16

F is a multivariate linear polynomial on p1, …, pn.

P(Xi = 1) = pi P(Y = 1) = q = F(p1, …, pn)

AND
OR

p1 = 0.63

p2 = 0.07
q* = 0.59

What

gate ?

?

?

q = a · p3 + b

Linearity Property between Input and

Output

p3

q

17

a and b are constant values related to the
values of p1, p2 and the structure of the
circuit.

AND
OR

p1 = 0.63

p2 = 0.07
q* = 0.59

What

gate ?

?

?

q = a · p3 + b

Linearity Property between Input and

Output

p3

q

18

= q*

= p3
*

q* = a · p3
* + b

|q − q* | = |a| · |p3 − p3
* |

Simplify the Search with Ideal

Probability

 If we choose p3 such that |p3 − p3
* | is minimal, then

the output error |q − q* | is also minimal.

 Therefore, we can simplify the optimization
problem by choosing p3 closest to p3

*, rather than
calculating q value and comparing it with q*.

 “Localize” the search problem.

 Save a lot of the computation.

|q − q* | = |a| · |p3 − p3
* |

19

AND
OR

 p1 = 0.63

 p2 = 0.07

Obtain Ideal Probability

p3
* = (q*− b) / a.

 p3 = 1

 q = q’ = 0.63
 p3_old = 0.08

 qold = 0.5894

q’ = a · 1 + b

qold = a · p3_old + b

q* = a · p3
* + b

20

Obtain constants a and b

Obtain the Best Local Replacement

 Initially, the upper input pi+1 is assigned as pi , the
probability value at the input of the previous circuit.

 Then, determine the gate type

 If pi+1 < pi*, choose OR gate. (The output probability of
OR gate is larger than its inputs.)

 If pi+1 ≥ pi*, choose AND gate. (The output probability
of AND gate is smaller than its inputs.)

pi+2= ?

pi+1 pi
*

What

gate ?
 pi

=

21

pi+1= ?

Determine pi+2

 First, determine the ideal probability pi+2
*

 If the gate is AND, pi+2
* = pi

* / pi+1 .

 If the gate is OR, pi+2
* = (pi

* − pi+1) / (1 − pi+1) .

 Choose pi+2 as the closest value to pi+2* in S’ (the set
of remaining probabilities).

 Inverters can be added to the two inputs of the gate.

Gate pi
*

pi+1

pi+2= ?

22

Obtain the Best Local Replacement

 Obtain the gate type and input values iteratively.

 When pi+2 is chosen, release the value of pi+1 and the
gate type.

 Obtain gate type and pi+1 in a similar way.

 Terminate when the error of the output |pi − pi
*|

stops decreasing.

pi+1= ?
pi

*

pi+2

What

gate ?

23

pi+1 Gate

Example

Initial condition:

?
pi

* = 0.3

pi =

=

pi+1 ?

S’ = {0.07, 0.15, 0.25}

0.8 pi+2 =

?

24

Example

First iteration:

?
pi

* = 0.3

pi =

=

pi+1 ?

S’ = {0.07, 0.15, 0.25}

0.8

0.8 > 0.3

AND
pi+2 =

?

25

AND

Example

First iteration:

pi
* = 0.3 =

pi+2

pi+1

=

?

S’ = {0.07, 0.15, 0.25}

0.8

pi+2
*= pi

* / pi+1

pi+2
*=

?

0.375

26

0.375

0.25

Choose 0.25 in S’ for pi+2

AND

Example

First iteration:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.07, 0.15, 0.25}

0.8

pi+2
*=

?

27

0.375

0.25

AND

Example

First iteration result:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.07, 0.15}

0.8

pi+2
*=

pi
 = 0.2

error = 0.1

28

0.8

0.25

Release pi+1 and gate type, update S’ set

Example

Second iteration:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.07, 0.15}

?

?

S’ = {0.07, 0.15, 0.8}

AND

29

0.25

Example

Second iteration:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.07, 0.15, 0.8}

?

?

0.25 < 0.3

OR

30

0.25

Example

Second iteration:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.07, 0.15, 0.8}

?

OR

pi+1
*=0.0667

Choose 0.07 in S’ for pi+1

0.07

31

0.07

0.25

Example

Second iteration result:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.15, 0.8}

OR

pi+1
*=

0.0667

pi
 = 0.3025

error = 0.0025

32

0.07

0.25

Example

Third iteration:

pi
* = 0.3 =

pi+2

pi+1

=

S’ = {0.15, 0.8}

?
OR

Release pi+2 and gate type, update S’ set

?

S’ = {0.25, 0.15, 0.8}

33

0.07

0.25

Example

Third iteration result:

pi
* = 0.3 =

pi+2

pi+1

=

OR

S’ = {0.15, 0.8}

pi+2
* = 0.247

pi
 = 0.3025

error = 0.0025

The output error stops decreasing at this iteration.

Terminate !

34

First Set of Experiments

 Objective: Synthesizing a circuit with output
probability q such that |q – q*| is minimal.

 Test cases

 Size of source probability set S is from 2 to 9.

 800 test cases are generated randomly for each size.
Each test case satisfies: when the previous method is
applied to it, the output error |q – q*| ≥ 0.001 ∙ q*.

 Apply our algorithm to each of the test cases, obtain
the statistic results.

 35

Normalized Average Depth vs. Size of

Source Probability Set

36

Normalized Average Relative Output Error vs.

Size of Source Probability Set

37

Second Set of Experiments

 Objective: Synthesizing a circuit with minimal depth,
whose output probability q satisfies |q – q*| ≤ e ∙ q*,
where e is a given error tolerance ratio.

 The test cases are the same as that in the first set of
experiments.

38

Normalized Average Depth vs. Size of

Source Probability Set

39

Conclusion

40

 We propose a new algorithm for synthesizing
combinational circuits to transfer source
probabilities into target probabilities.

 We apply a linearity property of probabilistic logic
computation and an iterative local search method to
increase the efficiency of our program.

 The circuits have much smaller depths and output
errors.

Future Work

 Find a global optimization method to improve
the solution to the random bit generation
problem.

41

Thank You !

Questions ?

42

