ASP-DAC 2013

I-LUTSim: An Iterative Look-Up Based Thermal Simulator for 3-D ICs

<u>Chi-Wen Pan</u>¹, Yu-Min Lee¹, Pei-Yu Huang², Chi-Pin Yang¹, Chang-Tzu Lin², Chia-Hsing Lee², Yung-Fa Chou² and Ding-Ming Kwai²

Institute of Communication Engineering, National Chiao Tung University
 Information and Communication Laboratories, ITRI

Jan 22-25, 2013

Pacifico Yokohama, Yokohama, Japan

Outline

Thermal Issues in 3-D ICs
Motivation & Problem Formulation
I-LUTSim
Experimental Results & Summary

Thermal Issues in 3-D ICs

Why Staking Chips in 3-D?

□ Pros of 3-D IC

- Reduce the global wire-length
- Reduce the power consumption
- Increase the chip density
- Heterogeneous integration

Accumulated Power

Thermal issues of 3-D ICs will be worse than that of 2-D ICs

Accumulating power density is higher than that of 2-D ICs

Low thermal conductivity of dielectric in interconnect layers

Thermal Issues (1/2)

□ Thermal related issues in VLSI design

- The delay of devices and wires varies as temperature increases
- The non-uniform temperature distribution causes the nonuniform wire and gate delay

Thermal Issues (2/2)

□ Thermal related issues in VLSI design

- The mean-time-to-failure (MTTF) of wires exponentially decreases as temperature increases
- Leakage current of devices exponentially increases as temperature increases
 Sub-threashold leakage current (uA)
- Thermal Runaway

Thermal Properties

Motivation & Problem Formulation

Motivation (1/2)

During the early physical design stages as floorplan /placement

- The macros/cells will be moved repeatedly
- The temperature distribution needs to be re-analyzed after each moving
- Solving the large scale modified nodal analysis (MNA) system is impractical
- Need an effective method to calculate the chip temperature without losing the accuracy

A Look-up Table Based Thermal Simulator

Motivation (2/2)

- For timing analysis: timing library in .lib
- For thermal analysis: need a thermal library

Why Tables Can be Pre-Constructed?

The following information can be obtained beforehand for table construction

- Thicknesses of silicon substrates and bulk, and material of TSV/TTSV are manufacturing parameters
- Tier counts
- Heat transfer coefficients of heat flow paths along package
- Effective thermal conductivity of interconnect layers
- The outline of chip

All can be determined before floorplan stage

Problem Formulation

Thermal model for early design stage

Steady State heat transfer equation

 $\nabla \cdot \big[\kappa(\mathbf{r}) \nabla T(\mathbf{r}) \big] = -p(\mathbf{r})$

subject to the boundary condition

$$\kappa(\mathbf{r}_{b_s}) \frac{\partial T(\mathbf{r}_{b_s})}{\partial \vec{n}_{b_s}} + h_{b_s} T(\mathbf{r}_{b_s}) = f_{b_s}(\mathbf{r}_{b_s})$$

Spatial Discretization and Duality

MNA

- $\mathbf{GT} = \mathbf{p}$
- \mathbf{G} : thermal conductance matrix
- T : vector of nodal temperatures

p : vector of power sources at nodes

Thermal quantity	unit	Electrical quantity	unit
P, Heat flow, power	-W	I, Current	A
T, Temperature difference	-K	V, Voltage	-V
R_{th} , Thermal resistance	K/W	R, Electrical resistance	Ω
C_{th} , Thermal capacitance	J/K	C, Electrical capacitance	F

Previous Works (1/2)

Power blurring is a superposition based method

- Calculating temperature profile by performing the convolution of power map and thermal mask
- Thermal mask can be obtained by
 - FDM/FEM simulation

Kemper@ THERMINIC07

> Thermal measurement with infrared camera

Previous Works (2/2)

Ultrafast temperature profile calculation in IC chips

- Theoretical base: Green's function Kemper@THERMINIC07
- Only for 2-D ICs

 Junction-level thermal analysis of 3-D integrated circuits using high definition power blurring
 Melamed @TCAD12

- Extending the power blurring method for 3-D ICs structure
- Separate response masks are generated for every homogenous environment
- Circuit with high variations of thermal conductivities will make it less effective or inapplicable

Contributions

A double-mesh table is proposed to capture the marginal value of the thermal response

 I-LUTSim only uses one set of homogeneous thermal table library
 The heat dissipation capability of package

The Kernel of I-LUTSim

Flowchart

Double-Mesh Table (1/3)

Double-mesh table of the unit power temperature

Double-Mesh Table (2/3)

Use *local similarity* to select the representative grids for constructing fine-mesh tables

Double-Mesh Table (3/3)

Execute the table shifting and interpolation process for the grids having no pre-built table

Table Look-Up

□ The superposition based table look-up

Complexity Analysis

□ The complexity of using double table

- $O((N_W + N_C + 1)N)$ for solving T_h
- O((N_W+N_C+1)(N+(q+1)N_{TSV}) for calculating T^q
 N : Total number of grids
 - N_W : Number of fine grids in the window
 - N_C : Number of coarse grids

 N_{TSV} : Number of grids has TSVs/TTSVs passing through Since N_{TSV} is smaller than N, the complexity for solving T_q is O((q+2)N)

Experimental Results & Summary

Experimental Results (1/3)

Experimental environment

- C++ language
- Intel Core 2 Quad 2.83GHz CPU machine with 8 GB memory
- Parameter setting of tables
 - The mesh size of equivalent circuit (N) : $64 \times 64 \times 15$ (10)
 - The window size of fine-mesh tables (N_W) : 10×10
 - The size of coarse-mesh tables (N_C) : 3×3

Experimental Results (2/3)

□ Table construction time

Tier	Construction Time (s)		
Count	Fine Mesh	Coarse Mesh	
2	21.98	354.43	
3	93.66	3213.83	

Test cases

- The geometry of each tier : $4832\mu m \times 4832\mu m \times 50\mu m$
- Industrial 90 nm standard cells

Test	Tier	Cell	TSV	Total
Chip	Count	Count	Count	Power (W)
Case1	2	0.5M	222	1.1
Case2	3	-8.3M	3320	5.8
Case3	3	8.4M	4000	6.3
Case4	3	8.2M	4000	6.0

Experimental Results (3/3)

Summary

Conclusion

• An efficient table look-up based thermal analyzer for 3-D ICs is developed and demonstrated by the experimental results

□ Future work

• To further extend our application scope, we are taking the power consumption and the non-uniform distributed thermal conductivity issue of interconnects into account

Thank you for your attention!

Q & A time

