Compact Nonlinear Thermal Modeling of Packaged Microprocessors

Zao Liu, Sheldon Tan, Hai Wang, Yingbo Hua Department of Electrical Engineering University of California, Riverside, CA Ashish Gupta Intel Corporation Chandler, AZ

Content

- Introduction to thermal modeling
- Problem of subspace-based thermal modeling
- Proposed method
- Experimental result
- Conclusion

Thermal modeling of packaged microprocessor

- Temperature has become a major concern for high performance microprocessors
- Even for severe for multi/many core anc emerging 3D stacked systems
 - Longer thermal paths
 - Loaded dependent hoptspots
 - Large thermal gradients and dynamic thermal effect related reliability issues.
- Compact thermal model at package levels is vital for efficient thermal aware design and management.
 - Enable thermal-aware design flow
 - Enable accurate online thermal management and regulation

Simulated Temp distribution using Cu sink (390 W/m K)

Bottom-up thermal modeling methods

- FDM (finite difference)
- FEM (finite element) [Lasance:SEMITHERM'95, Christiaens:TCPMT'98]
 - Limitation:
 - Knowledge of detailed thermal structures is not easy to obtain
 - Impractical for large scale circuits
- HotSpot [Huang:DAC'04, Skadron:ISCA'03]
 - Mainly for architectural level design exploration
 - Limitation:
 - Accuracy losses in lumped model

Behavioral thermal modeling method

- Matrix pencil or subspace methods [Overschee:book'06] [Eguia and Tan: TVLSI'10]
 - Obtains thermal model through input/output information
 - No need for detailed thermal structures

• Compact model suffers from accuracy losses due to non-linearity of the practical thermal system

Content

- Introduction to thermal modeling
- Problem of subspace-based thermal modeling
- Proposed method
- Experimental result
- Conclusion

Generation

p_{nxm}

Output: $H(s) \rightarrow nxm$ transfer function matrix

State space model of thermal system

The linear model of the thermal system can be described by state space equation:

$$x(t+1) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t)$$

Given input u(t) and output y(t), the state matrices *A*, *B*, *C* can be identified by subspace method.

Thermal systems are actual nonlinear!

• Nonlinearity is caused by the temperature dependent properties of the package materials.

Example: Temperature dependence of thermal conductivity

• The output frequencies (The input signal is $Pin=Psin(\pi t)$, t=0:0.1:1599.9)

4.35

4.4

4.45

4.5

Frequency (Hz)

4.55

4.6

4.65

4.7

3.8

3.85

3.9

3.95

Frequency (Hz)

4

4.05

4.1

Accuracy loss of linear model

Nonlinearity results in accuracy losses of the compact linear state space model (order=4).

Temperature output of the identified model (linear)

Content

- Introduction to thermal modeling
- Problem of subspace-based thermal modeling
- Proposed method
- Experimental result
- Conclusion

Proposed PWL modeling method

 Use piecewise linear model to approximate the thermal response of the chip for different temperature ranges

Outline of the proposed method

- Preparing training data sets for model identification in different temperature ranges
- Improved subspace method is used to identify the sub-models for each temperature range
- Linear transformation is used to build the piecewise linear model

Identification of different models at different temp ranges

Modeling transition from M_p to M_q

Data partition for model identification

Data partition scheme to build piecewise linear model (a) use 11 sub-models (b) use 6 sub-models (c) use 4 submodels

Build PWL model from sub-models

- To build PWL model, it is necessary to convert the state vectors of different sub-models to the same basis
- The identified sub-models are not on the same basis.
- At the transition region, the states in Model1 and Model2 differ by a linear transformation T_{21} : $x^2(k_1:k_N) = T_{21}x^1(k_1:k_N)$
- T_{21} could be determined using least square method.
- $x^{2}(k) = T_{21}x^{1}(k)$ transforms Model2 to the basis of Model1

Content

- Introduction to thermal modeling
- Problem of subspace-based thermal modeling
- Proposed method
- Experimental result
- Conclusion

Experimental setup

• Treat the meshed thermal chip package as a 16-input (power) and 25-output (temperature) system.

- Use COMSOL to simulate its transient temperature response to obtain the temperature data for piecewise linear system identification
- Full simulation time steps: 20412

Steady state temperature distribution

Input power waveform (I)

Input power waveform (II)

Input waveform used for model validation (Intel's signal)

Transient response of 16-input and 25 output system at section(1,1)

Use 1 linear model: Order = 4 Use piecewise linear model: Number of sub-model used: 4 Order =4

Transient response of 16-input and 25 output system at section(1,1)

Summary of errors of 16-temperature output of the piecewise linear models

Error with PWL models (order:4)

Num. of linear models in use	11	6	4
Maximum of mean errors	2.1%	3.9%	5.9%

Mean errors are calculated during the entire transient simulation

Performance comparison with linear model

Comparison items	Error	Identification time	Simulation time
PLM(order:4)	2.1%	63.8 sec	7.88 sec
LM (order:15)	2.3%	627.1 sec	22.2 sec

PLM – Piecewise linear model LM – Linear model

Conclusion

- Piecewise linear model scheme has been proposed to consider nonlinear effects in thermal systems.
- Linear sub-models are identified for different temperature ranges using subspace identification method.
- A linear transformation method has been proposed to build piecewise linear model.
- Our experiment results show that Piecewise linear model is more efficient for fast thermal modeling and simulation of packaged microprocessor.