

A Multilevel *H*-matrix-based Approximate Matrix Inversion Algorithm for Vectorless Power Grid Verification

Wei Zhao, Yici Cai, Jianlei Yang

Tsinghua University

ASP-DAC 2013, Yokohama January 22th

Outline

Introduction

- Proposed Approach
 - Algorithm Overview
 - $\square \mathcal{H}$ -matrices
 - Multilevel Methods
 - Iterative Refinement Scheme
- Experimental Results & Summary

Power Grid Verification

- Power grid verification is crucial for silicon success
- Simulation based approach
 - For the given current loadings i, to obtain voltage noise by solving

Gv = i (R Model)

- Simulation is not enough
 - Need to simulate large number of current vectors to cover usual working modes
 - Early stage verification cannot be performed since the detailed current waveform information is still unknown
 - No guarantee the worst noise (but not over pessimistic) can be found

Vectorless Power Grid Verification

Vectorless approach

- Early stage verification technique
- Optimization approach to obtain the worst case of IR-Drop

Problem formulation

Given current constraints to specify the feasible space of current excitations

> Local constraints $0 \le i \le I_L$

> Global constraints $Ui \leq I_G$

To estimate the worst-case voltage fluctuations by solve optimization problems

 $v = G^{-1}i$

Vectorless Power Grid Verification

The problem can be divided into two major tasks

$$\Box$$ Let $c_i \triangleq G^{-1}e_i$

where e_i is the $n \times 1$ vector of all zeros except the *i*-th component being 1, it is to obtain the *i*-th column of G^{-1} by solving $Gx = e_i$

The voltage of the *i***-***th* **node can be obtained by**

$$v_i = c_i^T i$$

Task 1: compute c_i by solving $Gx = e_i$

] Task 2: maximize
$$v_i = c_i^I i$$
 s.t.

 $Ui \leq I_G$ and $0 \leq i \leq I_L$

Total cost to verify a power grid with N nodes

□ Solving linear equations with *N* unknowns for *N* times

Solving LP problems for *N* **times**

Task 1: More than 80% computation cost!

Related Works for Task 1: Acceleration

Important observations

Multiple right-hand sides problem

Direct solvers are more favored to be adopted

Relatively lower accuracy requirement

> Tradeoff between accuracy and solving efficiency

Previous works - acceleration methods

Sparse Approximate Inverse

> SPAI (N. H. Abdul Ghani and F. N. Najm, DAC 2009)

> AINV (M. Avci and F. N. Najm, ICCAD 2010)

Hierarchical matrix inversion (X. Xiong and J. Wang, ICCAD 2010)

The Essence of Sparse Matrix Inverse

- Computing the sparse matrix inverse is equivalent to obtain the sensitivity of each node for all current variables
- The main difficulty for approximate inverse methods: global coupling property of the linear system
- If we want to get a better sparse approximation, we have to find a method which can bring in more global information with a certain amount of memory footprint.

Proposed Algorithm Framework

Major techniques used in the proposed algorithm

- $\square \mathcal{H}$ -matrix-based technique
- Modified multilevel matrix inversion algorithm
- Iterative refinement scheme

H-matrices

Data-sparse representation

Main idea

> Two parts of the geometry I and J: well separated (e.g. have a positive distance)

SPAI: the matrix block $M \in \mathbb{R}^{I \times J}$ is a zero matrix

 \mathcal{H} -matrix: the matrix block $M \in \mathbb{R}^{I \times J}$ can be approximated by

a low-rank matrix

Hierarchical block structure

Low-rank approximation

H-matrices

Time and space complexity: almost linear

Operation	Complexity
Matrix Vector Product	$\mathcal{O}\left(n\log n\right)$
Matrix Addition	$\mathcal{O}\left(n\log n ight)$
Matrix Multiplication	$\mathcal{O}\left(n\log^2 n\right)$
Matrix Inversion	$\mathcal{O}\left(n\log^2 n\right)$
LU Factorisation	$\mathcal{O}\left(n\log^2 n\right)$

H-matrix construction

- **Cluster tree**
 - > Geometric clustering
 - > Algebraic clustering

Block cluster tree

H-matrices

H-matrix-based approximate inverse construction

Computation flow

Two choices

- \succ Direct $\mathcal H\text{-matrix}$ inversion
- $ightarrow \mathcal{H}$ -Cholesky factorization

Block matrix inversion

2 × 2 block partitioned matrix:
$$A = \begin{bmatrix} D_1 & B \\ B^T & D_2 \end{bmatrix}$$

The block LU factorization of *A*:

$$A = \begin{bmatrix} D_1 & B \\ B^T & D_2 \end{bmatrix} = \begin{bmatrix} D_1 & 0 \\ B^T & S \end{bmatrix} \begin{bmatrix} I & D_1^{-1}B \\ 0 & I \end{bmatrix} (S = D_2 - B^T D_1^{-1}B)$$

The block forward and backward substitution:

$$\begin{bmatrix} D_1 & 0 \\ B^T & S \end{bmatrix} \begin{bmatrix} I & D_1^{-1}B \\ 0 & I \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

$$\begin{array}{l}
1. x_1 \coloneqq D_1^{-1} b_1 \\
2. x_2 \coloneqq S^{-1} (b_2 - B^T x_1) \\
3. x_1 \coloneqq x_1 - D_1^{-1} B x_2
\end{array}$$

Block matrix inversion

Red-black ordering

D₁: diagonal matrix

The Main problem: inverse of the Schur complement

Approximate inversion

$$\begin{array}{l}
1. x_{1} \coloneqq D_{1}^{-1}b_{1} \\
2. \text{Compute } M_{s}^{-1} \cong S^{-1} \\
3. x_{2} \coloneqq M_{s}^{-1}(b_{2} - B^{T}x_{1}) \\
4. x_{1} \coloneqq x_{1} - D_{1}^{-1}Bx_{2}
\end{array}$$

The approximate inverse of the Schur complement can be computed by the *H*-matrix-based approximate inverse method

Algebraic multigrid methods

Basic notation

- > Fine-grid operator A^h
- Coarse-grid operator A^{2h}
- > Restriction operator I_h^{2h}
- > Prolongation operator I_{2h}^h
- Main ideas
 - Coarse-grid correction
 - Nested iteration

Multigrid methods

- Fine-grid operator A^h
- Restriction operator I_h^{2h}
- Prolongation operator I_{2h}^h
- The coarse-grid operator $A^{2h} = I_h^{2h} A^h I_{2h}^h$
- Coarse-grid correction

- Block matrix inversion
- The original matrix A
- $W = \begin{bmatrix} -B^T D_1^{-1} & I \end{bmatrix}$

•
$$W^T = [-B^T D_1^{-1} \quad I]^T$$

• The Schur complement $S = D_2 - B^T D_1^{-1} B$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} D_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + W^T S^{-1} W \left(\begin{bmatrix} b_1 \\ b_2 \end{bmatrix} - A \begin{bmatrix} D_1^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} \right)$$

• Nested iteration

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} D_1^{-1} & 0 \\ -D_2^{-1}B^T D_1^{-1} & D_2^{-1} \end{bmatrix} \begin{bmatrix} 0 & -B \\ 0 & 0 \end{bmatrix} W^T S^{-1} W \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} + \begin{bmatrix} D_1^{-1} & 0 \\ -D_2^{-1}B^T D_1^{-1} & D_2^{-1} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$

Approximate block matrix inversion

Algorithm based on coarse-grid correction

1. $x_1 \coloneqq D_1^{-1} b_1$ 2. Compute $M_s^{-1} \cong S^{-1}$, $x_2 \coloneqq M_s^{-1} (b_2 - B^T x_1)$ 3. $x_1 \coloneqq x_1 - D_1^{-1} B x_2$

Modified algorithm based on nested iteration

 $\begin{array}{l}
1. x_{1} \coloneqq D_{1}^{-1}b_{1} \\
2. u \coloneqq b_{2} - B^{T}x_{1} \\
3. \text{ Compute } M_{s}^{-1} \cong S^{-1}, \ x_{2} \coloneqq M_{s}^{-1}u \\
4. x_{1} \coloneqq x_{1} - D_{1}^{-1}Bx_{2} \\
5. x_{2} \coloneqq D_{2}^{-1}(B^{T}D_{1}^{-1}Bx_{2} + u)
\end{array}$

The multilevel version

- Recursive solution
- Multilevel Schur complement approximation
- Not really based on the fundamental multigrid principles of smoothing and coarse-level correction.

$$\begin{array}{l}
1.x_{1} \coloneqq D_{1}^{-1}b_{1} \\
2. \text{ If } k = Level_{max} \\
3. \quad \text{Compute } M_{s}^{-1} \cong S^{-1} \\
x_{2} \coloneqq M_{s}^{-1}(b_{2} - B^{T}x_{1}) \\
4. \text{ Else} \\
5. \quad \text{MAMI}(S, x_{2}, k + 1) \\
6. \text{ End If} \\
7. x_{1} \coloneqq x_{1} - D_{1}^{-1}Bx_{2}
\end{array}$$

Iterative Refinement Scheme

Iterative refinement

Enhance the robustness of the *H*-matrix-based approximate inverse method

Linear iteration

$$x_0 = 0, x_{i+1} = x_i + \widetilde{A^{-1}}(e_i - Ax_i)$$

Convergence rate

$$R = \left\| I - \widetilde{A^{-1}}A \right\|$$

Advantage: low extra computational cost

Proposed algorithms

C++ implementation

□ HLIBpro library is adopted to perform *H*-matrix construction

Experimental platform

□ Linux Server with Intel CPU@2.33GHz and 8GB RAM

Comparison

ICCG solver with IC(0) preconditioner

Cholmod solver from SuiteSparse package

Comparison with ICCG and Cholmod

Runtime (second) Peak Memory (B)

Grid Size	${\mathcal H}$ -matrix				Cholmod			ICCG
	Setup	Solve	Memory	Avg. Error	Setup	Solve	Memory	Solve
5875	0.62	0.02	7.50M	4.9E-4	0.18	0.03	5.42M	0.02
22939	3.48	0.08	33.74M	2.5E-4	0.76	0.12	30.09M	0.13
35668	6.17	0.13	53.55M	1.2E-3	0.93	0.2	52.42M	0.23
51195	9.55	0.19	83.01M	9.7E-4	1.36	0.31	84.37M	0.36
90643	18.83	0.35	161.37M	2.5E-3	2.61	0.54	176.05M	0.78
141283	31.94	0.58	254.48M	2.0E-3	4.54	0.89	302.26M	1.60
203725	65.97	0.89	479.94M	1.2E-3	6.92	1.28	469.77M	2.73
277559	94.71	1.22	670.13M	3.4E-3	8.74	1.64	687.82M	4.82
562363	206.24	2.56	1.39G	1.1E-3	26.39	3.87	1.63G	12.07
681265	344.76	3.29	2.04G	1.0E-3	31.68	4.54	2.09G	16.48
953245	443.93	4.54	2.72G	9.9E-4	45.57	6.38	3.08G	32.87
1446655	802.83	7.16	4.60G	4.4E-3	81.13	9.82	5.61G	87.29

Runtime (second) Peak Memory (B)

With multilevel approach

Grid Size	${\mathcal H}$ -matrix				${\mathcal H}$ -matrix + Multilevel			
	Setup	Solve	Memory	Avg. Error	Setup	Solve	Memory	Avg. Error
5875	0.62	0.02	7.50MB	4.9E-4	0.46	0.01	3.80MB	1.3E-3
22939	3.48	0.08	33.74MB	2.5E-4	2.72	0.05	19.89MB	3.9E-4
35668	6.17	0.13	53.55MB	1.2E-3	4.25	0.08	29.14MB	6.6E-4
51195	9.55	0.19	83.01MB	9.7E-4	6.57	0.12	43.79MB	1.2E-3
90643	18.83	0.35	161.37M	2.5E-3	14.37	0.22	87.05MB	2.1E-3
141283	31.94	0.58	254.48M	2.0E-3	21.87	0.34	127.76M	2.7E-3
203725	65.97	0.89	479.94M	1.2E-3	37.53	0.50	196.14M	1.2E-3
277559	94.71	1.22	670.13M	3.4E-3	55.40	0.66	295.32M	2.3E-3
562363	206.24	2.56	1.39GB	1.1E-3	155.79	1.42	671.49M	1.2E-3
681265	344.76	3.29	2.04GB	1.0E-3	220.04	1.76	910.42M	1.2E-3
953245	443.93	4.54	2.72GB	9.9E-4	371.59	2.50	1.33GB	2.0E-3
1446655	802.83	7.16	4.60GB	4.4E-3	1833.54	4.01	2.45GB	4.7E-3

Solve time comparison

Memory usage comparison

Memory

Summary

- This paper proposed a multilevel *H*-matrix-based approximate matrix inversion algorithm for vectorless power grid verification.
- The combination of the *H*-matrix-based technique and the multilevel method is successful. And the proposed algorithm can obtain an almost linear complexity.
- The proposed method can be also used for other occasions where linear systems with multiple righthand sides problem needs to be solved.

THANKS FOR YOUR ATTENTION!

Q & A

