A Separation and Minimum Wire Length Constrained Maze Routing Algorithm under Nanometer Wiring Rules

¹National Tsing-Hua University ²SYNOPSYS Fong-Yuan Chang¹², Ren-Song Tsay¹, Wai-Kei Mak¹, Sheng-Hsiung Chen²

Outline

Nanometer wiring rules
Traditional rule handling methods
MANA: a MAze algorithm under NAnometer rule
Experimental results

Optical Proximity Correction

What you see is what you get

Major Violations

- 94% violations
- Rules
 - End-end separation rules
 - Minimum length rules

Design Rules (1/2)

o The end-end separation rule

- S₁: if there is a wire near a wire end on a neighboring track
- S_2 : others

Design Rules (2/2)

The minimum required length for each wire segment

Outline

Nanometer wiring rules
Traditional rule handling methods
MANA: a MAze algorithm under NAnometer rule
Results and future work

Post-Routing Rule Handing

A post rule handling method

- 1. Find shortest paths without considering rules
- 2. Extend short wires to meet the required length

In-Routing Rule Handing 1/2

• A maze handling method [DAC2012]

• A shortest path with each segment no less than the required length

Problem

 Paths found by traditional methods may contains violations or are not shortest.

Outline

 Nanometer wiring rules
 Traditional rule handling methods
 MANA: a MAze algorithm under NAnometer rule
 Algorithm flow

- Runtime complexity
- Experimental results

The Proposed Algorithm

- MANA: a shortest path MAze algorithm under NAnometer Rules
 - End-end separation rules
 - The minimum wire length rule
- o Goal
 - Resolve major violations

End-End Separation Rule Handling

Pre-filter out infeasible grid points

 For each grid point, check if any endend separation rules are violated when a wire passes through the point.

If there is a wire near a wire end, separation = 2 pitches

The Minimum Length Handling

o Method

• Extend short wires to meet the minimum wire length rule

o Extension

• The extra extended wire segments

Min-Wire-Length: 3 Pitches

The Length of Path with Extension

o Path length

• The lengths of all wires and extensions

Min-Wire-Length: 3 Pitches

The Length of a Partial Path

• The length of a partial path

- Min length : the length of last wire without extensions plus the sum of lengths of all previous wires with extensions.
- Max length: the length of last wire with extension to meet the required length plus the sum of lengths of all previous wires with extensions.

MANA Algorithm

 Concept: search all partial paths from the source and ensure there are enough spacing for wire extension

Polynomial runtime complexity

MANA Algorithm Flow

An example

min	length				
р5	10				
p4	9				

Path from *p4*: 12 Path from *p5*: 11

Polynomial Runtime Complexity

- Step 6: Prune unnecessary partial paths
 - If any full path extended from a partial path can be replaced by another partial path without increasing the path length, the partial path can be pruned.
 - Two pruning strategies

Two Pruning Strategies 1/2

o Strategy 1

- P and P' are two partial paths from the source and connect to a same target point
- $Max(P') \leq Min(P)$

• Prune P

Max(): the max length, Min(): the min length

Two Pruning Strategies 2/2

Strategy 2 Max(P') = Max(P) and Min(P') = Min(P) Prune P

Equal Path Length Theorem 1/3

• **Theorem:** If Max(P)=Max(P') and Min(P)=Min(P'), then $L(P_1) = L(P_2)$, where P_1 and P_2 are full paths extended from P and P' respectively with the same extension to the target.

Equal Path Length Theorem 2/3

W₁ and W₂ contain no extension
L(P₁) = Min(P) + Min(E)
L(P₂) = Min(P') + Min(E)

LO: the length of a path

Equal Path Length Theorem 3/3

- W₁ and W₂ both contain extensions
 L(P₁) = L(P₂)
- Only one of W_1 and W_2 contains extensions
 - Non existing case

Algorithm Characteristics

Prevent major violations
Special pruning strategies
Polynomial time complexity

Outline

 Nanometer wiring rules
 Traditional rule handling methods
 MANA: a MAze algorithm under NAnometer rule
 Experimental results

CDR/SYNOPSYS
 Path Search Kernel
 A* -> MANA

2. Post-Processing

7 Test Cases

Cases	#inst	#net	Process
C1	68,472	12,752	65 nm
C2	1,558	1,775	40 nm
C3	8,971	11,210	40 nm
C4	2,221	407	40 nm
C5	9,984	1,837	40 nm
C6	9,984	1,837	28 nm
C7	11,894	11,210	28 nm

Violation Prevention

Original Router with A*

Original Router with MANA

32,313 vios Case: C3 1,816 vios

Experimental Results

- o Average runtime
 - > 2 times reduced
- o Wiring quality
 - Wirelenth and via# are slightly reduced.

	Original router				Router with MANA				Comparison			
Case	time(sec)	W.L.(mm)	#via	#vio	time(sec)	W.L.(mm)	#via	#vio		t-r	w-r	v-r
C1	293	237,084	142,541	0	150	230,178	138,384	0		2.0	1.03	1.03
C2	16	32,943	14,356	45	7	31.983	14,220	0	2.3		1.03	1.01
C3	148	111,359	90,504	0	75	108,115	88,742	0	2.0		1.03	1.02
C4	105	9,796	3,373	12	31	9,618	3,357	0	3.4		1.02	1.00
C5	492	27,294	17,201	0	101	26,500	17,045	0	4.9		1.03	1.01
C6	188	17,295	15,924	38	170	16,950	15,761	4	1.1		1.02	1.01
C7	209	88,563	74,553	0	183	85,951	74,625	0	1.1		1.03	1.00
			Success	57%			Success	86%	Av g.	2.4	1.03	1.01

Conclusion

Nanometer wiring rules

- End-end separation
- Minimum wire length
- MANA: A Maze routing algorithm under NAnometer rules
 - Equal path length theorem
- Experimental rules
 - 94% violations are prevented
 - > 2 times runtime reduction

 An end-end violation caused by two wire segments of a path

