
A Clique-Based Approach

to Find Binding and Scheduling Result

in Flow-Based Microfluidic Biochips

Trung Anh Dinh†, Shigeru Yamashita†, Tsung-Yi Ho‡, Yuko Hara-Azumi*

† Ritsumeikan University, Japan
‡ National Cheng Kung University, Taiwan

* Nara Institute of Science and Technology, Japan

ASP-DAC 2013 1

Agenda

• Introduction

• Problem formulation

• Proposed method

• Experimental results

• Conclusions and future work

ASP-DAC 2013 2

Agenda

• Introduction

– Flow-Based Microfluidic Biochips

• Definition

• Architecture model

– Biochemical application model

• Problem formulation

• Proposed method

• Experimental results

• Conclusions and future work

ASP-DAC 2013 3

Flow-Based Microfluidic Biochips

• Flow-Based Microfluidic biochips:

– Based on the principle of continuous fluid flows in

microchannels

– Microvalves are used to manipulate fluid flows

– Combination of multiple valves makes more complex

units (switches, mixers, etc)

ASP-DAC 2013 4

www.micronics.net

Architecture Model

• A system-level model was formerly proposed [1]:

– Topology graph

– Set of vertices: microfluidic components Ci (switches,

mixers, storage reservoirs, etc)

– Set of edges: directed channels between components

ASP-DAC 2013 5

In2

In1

S3

Mixer1

Mixer2

S1

S2

S4

S5

Out1

Heater1

Out2
Storage-2

S6 S7

[1] W. H. Minhass, P. Pop and J. Madsen CASES’ 2011

Switch

Flow Paths

• A flow path F: a single path between two

components. E.g., F1 = (In1, S1, Mixer1)

• However, not all routes between two arbitrary

components are acceptable

– E.g., there is no path from Heater1 to Mixer1

– A storage is utilized as an intermediate transit

ASP-DAC 2013 6

Mixer1

Mixer2

In1

S1

S2

S4

S5

Out1

Heater1

In2

Out2
Storage-2

S6 S7 S3

F1

Flow Paths

• Routing constraints: two paths which share

common components as sources/sinks or common

switches are exclusive

– Exclusive paths cannot be executed simultaneously

– E.g., F1: F2 ∨ F3 ∨ F5 ∨ F15

ASP-DAC 2013 7

Mixer1

Mixer2

In1

S1

S2

S4

S5

Out1

Heater1

In2

Out2
Storage-2

S6 S7 S3

F1= (In1, S1, Mixer1)

F2 = (In1, S1, S2, Mixer2)

F3= (In2, S2, S1, Mixer1)

F5−x= (In1, S1, S2, S3, Storage-2)

F15−x= (Storage-2, S3, S2, S1, Mixer1) Conflict!!!

Biochemical Application Model

• Biochemical Application Model:

– Sequencing graph

– Each vertex Oi: represents one

bioassay operation

– Edges represent execution

constraints

• E.g., O1 & O2 must be

completed before O4

ASP-DAC 2013 9

O1 O2 O3

O4

O6

Mix

(3)

Mix

(5)
Mix

(3)

Heat

(2)

Mix

(2)

Source

Sink

O5
Mix

(2)

Agenda

• Introduction

• Problem formulation

• Proposed method

• Experimental results

• Conclusions and future work

ASP-DAC 2013 10

Problem Formulation

• Binding: decides by which component an

operation should be executed

– E.g., O3 is bound to Mixer1

ASP-DAC 2013 11

O1 O2 O3

O4

O6

Mix

(3)

Mix

(5)
Mix

(3)

Heat

(2)

Mix

(2)

Source

Sink

O5
Mix

(2)

Mixer1

Mixer2

In1

S1

S2

S4

S5

Out1

Heater1

In2

Out2
Storage-2

S6 S7
S3

Problem Formulation

• Scheduling: decides when each operation should

be executed

– E.g., t(O3) = 5

ASP-DAC 2013 12

O1 O2 O3

O4

O6

Mix

(3)

Mix

(5)
Mix

(3)

Heat

(2)

Mix

(2)

Source

Sink

O5
Mix

(2)

Mixer1

Mixer2

In1

S1

S2

S4

S5

Out1

Heater1

In2

Out2
Storage-2

S6 S7
S3

Problem Formulation

ASP-DAC 2013 13

Mixer1

Mixer2

In1

S1

S2

S4

S5

Out1

Heater1

In2

Out2
Storage-2

S6 S7
S3

O1 O2 O3

O4

O6

Mix

(3)

Mix

(5)
Mix

(3)

Heat

(2)

Mix

(2)

Source

O5
Mix

(2)

Mixer1

Heater1

Mixer2

F1 F3 O1

F4 F2

F9-1

F14

F7

F16-1 O4

F1 O3
F8

F14

O5 F17-1

F7

F16-1

O6

F3

O2

 0 8 12 19 24 26

Problem Formulation

• Objective: find a binding and scheduling result

which minimizes the execution time of a

biochemical application

• Constraints: routing constraints and execution

constraints

• Related work:

– W. H. Minhass, P. Pop and J. Madsen CASES’ 2011

• List-based scheduling algorithm (LS algorithm)

– W. H. Minhass, P. Pop and J. Madsen DTIP’ 2012

• Constraint Programming (routing constraints are not

considered)

ASP-DAC 2013 14

Agenda

• Introduction

• Problem formulation

• Proposed method

• Experimental results

• Conclusions and future work

ASP-DAC 2013 15

Proposed Method

• The main reason which makes the problem

different from conventional LSI binding and

scheduling problems is routing constraints

• Previous work: LS algorithm (heuristic)

• Proposed method: transform to a maximum clique

problem (MCP)

– Routing constraints are formulated naturally

– Satisfies the optimality of the problem

ASP-DAC 2013 16

Proposed Method

• Key idea:

– For an upper bound of execution time, verify the

existence of a binding and scheduling result

– Binary search the upper bound to find the optimal

execution time

• The existence of a valid binding and scheduling

result ↔ the validity of the maximum clique’s
cardinality in G = (V, E)

ASP-DAC 2013 17

Type 1-vertices

• For an operation Oi, what information do we need ?

– E.g., O1:

• Which component to be bound ?

• When to execute ?

• When/where to go ?

ASP-DAC 2013 18

Mixer1 F9-1 O1

5 8

E.g. Mixer1

E.g. 5

E.g. 8/Storage1 (F9)

(O1
first, Mixer2, Storage2, 5, 8)

(O1
first, Mixer1, Storage2, 5, 8)

(O1
first, Mixer1, Storage2, 5, 9)

(O1
first, Mixer2, Storage2, 5, 10)

• For the output of an operation Oi, what information

do we need ?

– E.g., the output of O1

• Where is the output of O1 now ?

• When/Where to go ?

• When to execute the next operation ?

Type 2-vertices

ASP-DAC 2013 19

Mixer2

13 17

E.g. Storage1

E.g. 13/Mixer2 (F16-1)

E.g. 17

(O1
second, Storage1, Mixer2, 13, 17)

F16-1 O4

O1

O4

(O1
second, Storage1, Mixer1, 13, 17)

(O1
second, Storage1, Mixer1, 14, 18)

(O1
second, Storage1, Mixer1, 14, 19)

F14

Set of edges E

ASP-DAC 2013 20

Routing constraints

F9-1 O1

O2 Mixer2

Mixer1

v1
first = (O1

first, Mixer1, Storage1, 8, 13)

v2
first = (O2

first, Mixer2, Out2, 8, 14)

8 13 14 17

v1
first

v2
first’ v2

first

v2
first’ = (O2

first, Mixer2, Out2, 8, 17)

Set of edges E

ASP-DAC 2013 21

Routing constraints

F9-1 O1

F14 O2

Mixer1

v1
first = (O1

first, Mixer1, Storage1, 8, 13)

v3
first = (O2

first, Mixer1, Out2, 8, 14)

8 13 14 17

v1
first

v3
first’ v3

first

v3
first’ = (O2

first, Mixer1, Out2, 14, 20)

Resource constraints

Set of edges E

ASP-DAC 2013 22

Routing constraints v4
first

v5
first’ v5

first

Resource constraints

Execution constraints

O3
F8

O5 F17-1

Mixer1

Heater1

19 22 23 25

v4
first = (O3

first, Mixer1, Heater1, 19, 22)

v5
first = (O5

first, Heater1, Storage1, 23, 25) v5
first’ = (O5

first, Heater1, Storage1, 24, 26)

O3

O5

Graph: Example

ASP-DAC 2013 23

v1

v2

v3

Mixer1

Heater1

Mixer2

F1 F3 O1

F4 F2

F9-1

F14

F7

F16-1 O4

F1 O3
F8

F14

O5 F17-1

F7

F16-1

O6

F3

O2

 0 8 12 19 24 26 35

Graph: Example

ASP-DAC 2013 24

v1

v2

v8
 v7

v4

v5

v6

v3

Mixer1

Heater1

Mixer2

F1 F3 O1

F4 F2

F9-1

F14

F7

F16-1 O4

F1 O3
F8

F14

O5 F17-1

F7

F16-1

O6

F3

O2

 0 8 12 19 24 26 35

Graph Properties

• A final result is a sub-graph, in which vertices are

mutually connected, i.e., a clique

• Vertices are divided into groups:

– Input1
first, Input1

second, O1
first, O1

second, … O6
first, O6

second

– Vertices in one group are

independent

– Final result must contains

one vertex from each

group

ASP-DAC 2013 25

Input1
first

Input1
second

O1
second O1

first

O1
second

O6
second Final result is even a

maximum clique

Proposed Method: Summary

• For a fix upper bound of execution time, the

existence of a result can be verified

– By checking the cardinality of the maximum clique

• Binary search the upper bound to find the optimal

execution time

ASP-DAC 2013 26

Experimental Results

I/O Ports #Operations [2] Ours

PCR 2/2 7 30.3 29.8

(1.6%)

IVD 2/2 12 31.3 30.5

(2.55%)

Synthetic

Benchmark 1

2/2 10 56 51.5

(8.03%)

Synthetic

Benchmark 2

2/2 6 37* 35

(5.41%)

ASP-DAC 2013 27

* self-implemented program
[2] W. H. Minhass, P. Pop and J. Madsen CASE’2011 DTIP’ 2012

Conclusions and Future Work

• A new formulation for binding and scheduling
problem in flow-based microfluidic biochips is
proposed
– Previous: LS algorithm (heuristic)

– Ours: successfully transforms original problem to MCP
and find optimal results

• Future work: as MCP is NP-Complete, more
heuristic improvements are needed to deal with
larger designs

• Acknowledgement: Wajid Hassan Minhass and
Prof. Paul Pop for providing benchmarks and
manuscripts for the comparative studies

ASP-DAC 2013 28 THANK YOU FOR YOUR ATTENTION

