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Flow-Based Microfluidic Biochips 

• Flow-Based Microfluidic biochips: 

– Based on the principle of continuous fluid flows in 

microchannels 

– Microvalves are used to manipulate fluid flows 

– Combination of multiple valves makes more complex 

units (switches, mixers, etc) 
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Architecture Model 

• A system-level model was formerly proposed [1]: 

– Topology graph 

– Set of vertices: microfluidic components Ci (switches, 

mixers, storage reservoirs, etc) 

– Set of edges: directed channels between components 
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Flow Paths 

• A flow path F: a single path between two 

components. E.g., F1 = (In1, S1, Mixer1) 

• However, not all routes between two arbitrary 

components are acceptable 

– E.g., there is no path from Heater1 to Mixer1 

– A storage is utilized as an intermediate transit 
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Flow Paths 

• Routing constraints: two paths which share 

common components as sources/sinks or common 

switches are exclusive 

– Exclusive paths cannot be executed simultaneously 

– E.g., F1: F2 ∨ F3 ∨ F5 ∨ F15 
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F1= (In1, S1, Mixer1)  

F2 = (In1, S1, S2, Mixer2) 

F3= (In2, S2, S1, Mixer1) 

F5−x= (In1, S1, S2, S3, Storage-2) 

F15−x= (Storage-2, S3, S2, S1, Mixer1) Conflict!!! 



Biochemical Application Model 

• Biochemical Application Model: 

– Sequencing graph 

– Each vertex Oi: represents one 

bioassay operation 

– Edges represent execution 

constraints 

• E.g., O1 & O2 must be 

completed before O4 
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Problem Formulation 

• Binding: decides by which component an 

operation should be executed 

– E.g., O3 is bound to Mixer1 
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Problem Formulation 

• Scheduling: decides when each operation should 

be executed 

– E.g., t(O3) = 5 
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Problem Formulation 

ASP-DAC 2013 13 

Mixer1 

Mixer2 

In1 

S1 

S2 

S4 

S5 

Out1 

Heater1 

In2 

Out2 
Storage-2 

S6 S7 
S3 

O1 O2 O3 

O4 

O6 

Mix 

(3) 

Mix 

(5) 
Mix 

(3) 

Heat 

(2) 

Mix 

(2) 

Source 

O5 
Mix 

(2) 

Mixer1 

Heater1 

Mixer2 

F1 F3 O1 

F4 F2 

F9-1 

F14 

F7 

F16-1 O4 

F1 O3 
F8 

F14 

O5 F17-1 

F7 

F16-1 

O6 

F3 

O2 

  0                       8          12                  19           24   26                                                      



Problem Formulation 

• Objective: find a binding and scheduling result 

which minimizes the execution time of a 

biochemical application 

• Constraints: routing constraints and execution 

constraints 

• Related work: 

– W. H. Minhass, P. Pop and J. Madsen CASES’ 2011 

• List-based scheduling algorithm (LS algorithm) 

– W. H. Minhass, P. Pop and J. Madsen DTIP’ 2012 

• Constraint Programming (routing constraints are not 

considered) 

 
ASP-DAC 2013 14 



Agenda 

• Introduction 

• Problem formulation 

• Proposed method 

• Experimental results 

• Conclusions and future work 

ASP-DAC 2013 15 



Proposed Method 

• The main reason which makes the problem 

different from conventional LSI binding and 

scheduling problems is routing constraints 

• Previous work: LS algorithm (heuristic) 

• Proposed method: transform to a maximum clique 

problem (MCP) 

– Routing constraints are formulated naturally 

– Satisfies the optimality of the problem 
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Proposed Method 

• Key idea:  

– For an upper bound of execution time, verify the 

existence of a binding and scheduling result 

– Binary search the upper bound to find the optimal 

execution time 

• The existence of a valid binding and scheduling 

result ↔ the validity of the maximum clique’s 
cardinality in G = (V, E) 
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Type 1-vertices 

• For an operation Oi, what information do we need ? 

– E.g., O1: 

• Which component to be bound ?  

• When to execute ?  

• When/where to go ?  
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• For the output of an operation Oi, what information 

do we need ? 

– E.g., the output of O1 

• Where is the output of O1 now ?  

• When/Where to go ?  

• When to execute the next operation ? 

Type 2-vertices 

ASP-DAC 2013 19 

Mixer2 

13 17 

E.g. Storage1 

E.g. 13/Mixer2 (F16-1) 

E.g. 17  

(O1
second, Storage1, Mixer2, 13, 17) 

F16-1 O4 

O1 

O4 

(O1
second, Storage1, Mixer1, 13, 17) 

(O1
second, Storage1, Mixer1, 14, 18) 

(O1
second, Storage1, Mixer1, 14, 19) 



F14 

Set of edges E 

ASP-DAC 2013 20 

Routing constraints 

F9-1 O1 

O2 Mixer2 

Mixer1 

v1
first = (O1

first, Mixer1, Storage1, 8, 13) 

v2
first = (O2

first, Mixer2, Out2, 8, 14) 

8                13  14        17   

v1
first 

v2
first’ v2

first 

v2
first’ = (O2

first, Mixer2, Out2, 8, 17) 



Set of edges E 

ASP-DAC 2013 21 

Routing constraints 

F9-1 O1 

F14 O2 

Mixer1 

v1
first = (O1

first, Mixer1, Storage1, 8, 13) 

v3
first = (O2

first, Mixer1, Out2, 8, 14) 

8                13  14        17   

v1
first 

v3
first’ v3

first 

v3
first’ = (O2

first, Mixer1, Out2, 14, 20) 

Resource constraints 



Set of edges E 

ASP-DAC 2013 22 

Routing constraints v4
first 

v5
first’ v5

first 

Resource constraints 

Execution constraints 

O3 
F8 

O5 F17-1 

Mixer1 

Heater1 

19          22  23     25   

v4
first = (O3

first, Mixer1, Heater1, 19, 22) 

v5
first = (O5

first, Heater1, Storage1, 23, 25) v5
first’ = (O5

first, Heater1, Storage1, 24, 26) 

O3 

O5 



Graph: Example 
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Graph Properties 

• A final result is a sub-graph, in which vertices are 

mutually connected, i.e., a clique 

• Vertices are divided into groups: 

– Input1
first, Input1

second, O1
first, O1

second, … O6
first, O6

second 

– Vertices in one group are  

independent 

– Final result must contains  

one vertex from each  

group 
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Proposed Method: Summary 

• For a fix upper bound of execution time, the 

existence of a result can be verified  

– By checking the cardinality of the maximum clique 

• Binary search the upper bound to find the optimal 

execution time 
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Experimental Results 

I/O Ports #Operations [2] Ours 

PCR 2/2 7 30.3 29.8 

(1.6%) 

IVD 2/2 12 31.3 30.5 

(2.55%) 

Synthetic 

Benchmark 1 

2/2 10 56 51.5 

(8.03%) 

Synthetic 

Benchmark 2 

2/2 6 37* 35  

(5.41%) 
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* self-implemented program  
[2] W. H. Minhass, P. Pop and J. Madsen CASE’2011 DTIP’ 2012 



Conclusions and Future Work 

• A new formulation for binding and scheduling 
problem in flow-based microfluidic biochips is 
proposed 
– Previous: LS algorithm (heuristic) 

– Ours: successfully transforms original problem to MCP 
and find optimal results 

• Future work: as MCP is NP-Complete, more 
heuristic improvements are needed to deal with 
larger designs 
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