A Clique-Based Approach to Find Binding and Scheduling Result in Flow-Based Microfluidic Biochips

Trung Anh Dinh[†], Shigeru Yamashita[†], Tsung-Yi Ho[‡], Yuko Hara-Azumi^{*} [†] Ritsumeikan University, Japan [‡] National Cheng Kung University, Taiwan ^{*} Nara Institute of Science and Technology, Japan

Agenda

- Introduction
- Problem formulation
- Proposed method
- Experimental results
- Conclusions and future work

Agenda

- Introduction
 - Flow-Based Microfluidic Biochips
 - Definition
 - Architecture model
 - Biochemical application model
- Problem formulation
- Proposed method
- Experimental results
- Conclusions and future work

Flow-Based Microfluidic Biochips

- Flow-Based Microfluidic biochips:
 - Based on the principle of continuous fluid flows in microchannels
 - Microvalves are used to manipulate fluid flows
 - Combination of multiple valves makes more complex units (switches, mixers, etc)

Architecture Model

- A system-level model was formerly proposed ^[1]:
 - Topology graph
 - Set of vertices: microfluidic components C_i (switches, mixers, storage reservoirs, etc)
 - Set of edges: directed channels between components

^[1] W. H. Minhass, P. Pop and J. Madsen CASES' 2011

- A flow path *F*: a single path between two components. E.g., $F_1 = (In_1, S_1, Mixer_1)$
- However, not all routes between two arbitrary components are acceptable
 - E.g., there is no path from $Heater_1$ to $Mixer_1$
 - A storage is utilized as an intermediate transit

- Routing constraints: two paths which share common components as sources/sinks or common switches are exclusive
 - Exclusive paths cannot be executed simultaneously

Biochemical Application Model

- Biochemical Application Model:
 - Sequencing graph
 - Each vertex O_i: represents one bioassay operation
 - Edges represent execution constraints
 - E.g., $O_1 \& O_2$ must be completed before O_4

Agenda

- Introduction
- Problem formulation
- Proposed method
- Experimental results
- Conclusions and future work

 Binding: decides by which component an operation should be executed

 Scheduling: decides when each operation should be executed

- Objective: find a binding and scheduling result which minimizes the execution time of a biochemical application
- Constraints: routing constraints and execution constraints
- Related work:
 - W. H. Minhass, P. Pop and J. Madsen CASES' 2011
 - List-based scheduling algorithm (LS algorithm)
 - W. H. Minhass, P. Pop and J. Madsen DTIP' 2012
 - Constraint Programming (routing constraints are not considered)

Agenda

- Introduction
- Problem formulation
- Proposed method
- Experimental results
- Conclusions and future work

Proposed Method

- The main reason which makes the problem different from conventional LSI binding and scheduling problems is routing constraints
- Previous work: LS algorithm (heuristic)
- Proposed method: transform to a maximum clique problem (MCP)
 - Routing constraints are formulated naturally
 - Satisfies the optimality of the problem

Proposed Method

- Key idea:
 - For an upper bound of execution time, verify the existence of a binding and scheduling result
 - Binary search the upper bound to find the optimal execution time
- The existence of a valid binding and scheduling result ↔ the validity of the maximum clique's cardinality in *G* = (*V*, *E*)

- For an operation O_i, what information do we need ?
 - E.g., *O*₁:
 - Which component to be bound ?
 - When to execute ?
 - When/where to go? E.g. 5

E.g. *Mixer*₁

E.g. $8/Storage_1(F_9)$

- For the output of an operation O_i , what information do we need?
 - E.g., the output of O_1
 - Where is the output of O_1 now ? E.g. *Storage*₁
 - When/Where to go ? E.g. $13/Mixer_2(F_{16-1})$
 - When to execute the next operation ? E.g. 17

Set of edges $\ensuremath{\mathcal{E}}$

Set of edges $\ensuremath{\mathcal{E}}$

Set of edges $\ensuremath{\mathcal{E}}$

Graph: Example

Graph: Example

Graph Properties

- A final result is a sub-graph, in which vertices are mutually connected, i.e., a clique
- Vertices are divided into groups:
 - $Input_1^{\text{first}}$, $Input_1^{\text{second}}$, O_1^{first} , O_1^{second} , ... O_6^{first} , O_6^{second}
 - Vertices in one group are independent
 - Final result must contains
 one vertex from each

group

Final result is even a maximum clique

Proposed Method: Summary

- For a fix upper bound of execution time, the existence of a result can be verified
 - By checking the cardinality of the maximum clique
- Binary search the upper bound to find the optimal execution time

Experimental Results

	I/O Ports	#Operations	[2]	Ours
PCR	2/2	7	30.3	29.8 (1.6%)
IVD	2/2	12	31.3	30.5 (2.55%)
Synthetic Benchmark 1	2/2	10	56	51.5 (8.03%)
Synthetic Benchmark 2	2/2	6	37*	35 (5.41%)

* self-implemented program

^[2] W. H. Minhass, P. Pop and J. Madsen CASE'2011 DTIP' 2012

Conclusions and Future Work

- A new formulation for binding and scheduling problem in flow-based microfluidic biochips is proposed
 - Previous: LS algorithm (heuristic)
 - Ours: successfully transforms original problem to MCP and find optimal results
- Future work: as MCP is NP-Complete, more heuristic improvements are needed to deal with larger designs
- Acknowledgement: Wajid Hassan Minhass and Prof. Paul Pop for providing benchmarks and manuscripts for the comparative studies

THANK YOU FOR YOUR ATTENTION