A Network-Flow Based Valve-Switching Aware Binding Algorithm for Flow-Based Microfluidic Biochips

18th Asia and South Pacific Design Automation Conference

Kai-Han Tseng

Sheng-Chi You, Wajid Hassan Minhass*, Tsung-Yi Ho, Paul Pop*

Department of Computer Science and Information Engineering

National Cheng Kung University, Taiwan

*Department of Informatics and Mathematical Modeling Technical University of Denmark, Denmark

Outline

What is Microfluidic?

- Microfluidics deals with the behavior, precise control and manipulation of fluids that are geometrically constrained to a small, typically sub-millimeter, scale.
- Typically, **micro** means one of the following features:
 - _ small volumes (µL, nL, pL, fL)
 - small size
 - low energy consumption
 - effects of the micro domain

WIKIPEDIA The Free Encyclopedia

Benefits of Microfluidics

- Economy of Scales
 - Volume reductions by several orders of magnitude over benchtop experiments
 - Extreme cost reduction for biological experiments
 - Rare samples (stem cells) can be studied in more detail
- Integration
 - Thousands of complex experiments can be performed in parallel
 - Integration with solid state optics, MEMS, and NEMS detectors
- Automation
 - All steps can be fully automated, reducing labor costs
- Cheap Mass-production

The Need of CAD Support

- Applications become more complicated
 - Large-scale bioassays
 - Multiple and concurrent assay operations on a biochip
- Design complexity is increased
 - The increasing rate of the valve numbers is four times faster than Moore's Law
- Current methodologies
 - Manual
 - Full-custom

Source: Fluidigm

Outline

Valve: The Basic Element of Microfluidics

- Technology: multi-layer soft lithography
- Fabrication substrate: elastomers (e.g., PDMS)
 - Good biocompatibility
 - Optical transparency

Valve: The Basic Element of Microfluidics

Valves combined to form more complex units, e.g., latches, switches, mixers, multiplexers, micropumps. The valves have the problem of reliability $\mathcal{V}_{\mathcal{A}}$ v_3 v_1 v_3 S S

Component Model: Storage

Component Model

Component Model: Mixer

Microfluidic mixer

Valve-Switching for Mixing Operation

Microfluidic mixer

Open the valve

Close the valve

1: Valve-switching 20 + 3r Times

Phase	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	V ₇	V ₈	V ₉
1. lp1	0	1	0	0	0	0	0	0	0
2. lp2	0	0	0	0	0	0	0	0	0
3. Mix	1	0	0	Mix	Mix	Mix	0	1	0
4. Op1	0		0	0	0	0	0	0	0
5. Op2	0	0	0	0	0	0	0	0	0

Motivation

2: Valve-switching 14 + 3r Times

Another Advantage

Outline

Problem Formulation

- Input: A biochemical application modeled as a sequential graph and a component library
- **Objective:** Obtain a resource binding result such that the total valve-switching amount and the application complete time is minimized
- Constraint: Resource constraint

Component	Phases				
Mixer	$Ip_1/Ip_2/Mix/Op_1/Op_2$				
Filter	Ip / Filter / Op_1 / Op_2				
Detector	Ip / Detect / Op				
Separator	Ip ₁ / Ip ₂ / Separat/ Op ₁ / Op ₂				
Heater	Ip / Heat / Op				

Outline

Input

Baseline Method :

List Scheduling Based Binding Algorithm

- Topological Sort
 - Apply topological sort for the application graph to compute the urgency criteria for the operations
- Binding Strategy
 - An operation is seen as ready only if it's previous operations were already bound to the components
 - Bind the ready operations to the components based on their urgency criteria, the operations having bigger urgency criteria will have higher priority

Applied atjoina CS aph

Binding by the urgency criteria

Set-based Wanisport actionst Islawemum Flow

Set-based Minimum Cost Maximum Flow

- Set-based
 - Because binding continuous operations to the same components can reduce the total valve-switching amount, we first group continuous operations in a set
- Maximum Flow
 - In our SMCMF algorithm, each flow path represents a component. So, our goal here is to maximize the component parallelization
- Minimum Cost
 - We are interested to find a way that not only satisfies the parallelization but also minimize the application complete time

Applicational G8aph

Depth-first Search

Build the Flow Network for the Sets

Separate Each Set to Two Nodes

Separate each set into two nodes, one for the input and the other for the output Create an edge from input to output

Separate the Destination Node

Separate Destination and the Sets

Edge Constraint

Build Edges for SMCMF

Build Edges for SMCMF

Minimum Cost Maximum Flow

Sort by the Priority

Insert the Remaining Operation

Resource Binding Result

Binding by Baseline Method

Binding by SMCMF

Construction of Biochip Architecture

- Relation-based placement strategy
 - Place the highly related components much closer to reduce the total length and the intersection number of the flow-channels
- Routing by Dijkstra Shortest Path algorithm
 - Make a trade-off between intersection numbers and the total length of the flow-channels

Scheduling

Baseline

Valve-switching : **336** (116/220) Application complete time : 31.5 (s)

SMCMF

Valve-switching : **228** (68/160) Application complete time : 28.5 (s)

Outline

Experimental Settings

- Implement our algorithm in C++ language on a PC with Core2 Quad processors at 2.66GHz and 3.25GB of RAM
- Compare set-based minimum cost maximum flow binding algorithm with list scheduling based baseline method
- Test on several synthetic benchmarks
 - Adjust operation numbers from 7 to 8191 and fix resource constraint as 20
 - Adjust resource constraint from 10 ~ 100 and fix operation numbers as 1023

Experimental Result

Operation : 7~8191 Mixer : 20 Total time on 20-mixer architecture Valve-switching on 20-mixer architecture 25 600 - SMCMF algorithm - SMCMF algorithm Complete time (K sec.) •••• Baseline method •••• Baseline method 31 255 511 1023 2047 4095 8191 31 511 1023 2047 4095 8191 7 63 127 7 15 63 127 255 15 Number of operations Number of operations **Application Complete Time** Valve-switching Amount

Experimental Result

Outline

Conclusion

- The valve-switching activities for the components such as mixer and storage are modeled
- A set-based minimum cost maximum flow (SMCMF) binding algorithm is proposed
- The experimental results shows that set-based minimum cost maximum flow binding algorithm not only minimizes the valve-switching amount but also reduces the application complete time

Thank You for Your Attention!