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What is Microfluidic?

e Microfluidics deals with the behavior, precise control
and manipulation of fluids that are geometrically
constrained to a small, typically sub-millimeter, scale.

e Typically, micro means one of the following features:

—| small volumes (uL, nL, pL, fL) |

— small size
— low energy consumption
— effects of the micro domain
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Benefits of Microfluidics

e Economy of Scales

— Volume reductions by several orders of magnitude over
benchtop experiments

— Extreme cost reduction for biological experiments
— Rare samples (stem cells) can be studied in more detall
® |[ntegration

— Thousands of complex experiments can be performed in
parallel

— Integration with solid state optics, MEMS, and NEMS detectors

e Automation
— All steps can be fully automated, reducing labor costs

e Cheap Mass-production



The Need of CAD Support

e Applications become more complicated

— Large-scale bioassays

— Multiple and concurrent assay operations on a biochip

e Design complexity is increased
— The increasing rate of the valve numbers is four times faster

than Moore’s Law

e Current methodologies

— Manual
— Full-custom
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Valve: The Basic Element of Microfluidics

Technology: multi-layer soft lithography

Fabrication substrate: elastomers (e.g., PDMS)
Good biocompatibility
Optical transparency
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Valve: The Basic Element of Microfluidics

Valves combined to form more complex units,
e.g., latches, switches, mixers, multiplexers, micropumps.
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Component Model: Storage

Inputs Waste
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Component Model

Storage
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It takes 2*log,N + 2 valve-switching for a
reagent to store into the storage, where N

depends on the number of chambers
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Component Model: Mixer

Microfluidic mixer

Pump
Input Waste
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Valve-Switching for Mixing Operation

Microfluidic mixer

Open the valve

ﬁ 5\ B Close the valve
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1: Valve-switching 20 + 3r Times
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Motivation

Valves B W reagents @ Mixer
/;\;
Casel:

Q When two reagents mix,
U it takes 20+ 3r valve-switching to

finish the mixing operation
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1: Valve-switching 20 + 3r Times

Caes2:

If we leave one reagent

in the same component, we can
reduce 6 times of valve-switching
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2: Valve-switching 14 + 3r Times
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5 Phases for a mixing operation

<« Valve-switching for a mixing operation

<+—» Reduce valve-switching 6 times
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Another Advantage
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# of valve-switching

= Valve-switching of mixer+
Valve-switching of intersections +
Valve-switching of storage
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Problem Formulation

e [nput: A biochemical application modeled as a
sequential graph and a component library

e Objective: Obtain a resource binding result such that
the total valve-switching amount and the application
complete time is minimized

e Constraint: Resource constraint
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Baseline Method :
List Scheduling Based Binding Algorithm

¢ Topological Sort

— Apply topological sort for the application graph to compute the
urgency criteria for the operations

¢ Binding Strategy

— An operation is seen as ready only if it's previous operations
were already bound to the components

— Bind the ready operations to the components based on

their urgency criteria, the operations having bigger urgency
criteria will have higher priority
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Binding by the urgency criteria
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Set-based Tviamispomiafost ISsxénmum Flow
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Set-based Minimum
Cost Maximum Flow
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Set-based Minimum Cost Maximum Flow

¢ Set-based

— Because binding continuous operations to the same
components can reduce the total valve-switching amount, we
first group continuous operations in a set

e Maximum Flow

— In our SMCMF algorithm, each flow path represents a
component. So, our goal here is to maximize the component
parallelization

e Minimum Cost

— We are interested to find a way that not only satisfies the
parallelization but also minimize the application complete
time
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Depth-first Search
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ynuous sets
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Build the Flow Network for the Sets
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Separate Each Set to Two Nodes

-~

"

~

Separate each set into two nodes, one for

the input and the other for the output
Create an edge from input to output




Separate the Destination Node
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Separate the destination node into two node,
one for the input and the other for the output
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Cost=0
Capacity = Given component nhumber

)

Cost =0
Capacity = 3




Separate Destination and the Sets




Edge Constraint
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Build Edges for SMCMF
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Build Edges for SMCMF

set2 oy EACh Set -> Destination
Cost=0
Capacity = 1
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Minimum Cost Maximum Flow

Set5 is isolated

1 4 concatenated sets
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Sort by the Priority

Priority

2. Number of total operations

[1. Number of continuous operations}

Priority
1. Number of continuous operations
2. Number of total operations
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high - low



Insert the Remaining Operation

Mixer, Mixer, Mixer; Mixer, Mixer, Mixer;



Resource Binding Result

Mixerl Mixer2 Mixer3
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Binding by Baseline Method
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Binding by SMCMF
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Construction of Biochip Architecture

¢ Relation-based placement strategy

— Place the highly related components much closer to reduce the
total length and the intersection number of the flow-channels

e Routing by Dijkstra Shortest Path algorithm

_ Make a trade-off between intersection numbers and the total
length of the flow-channels



Scheduling

Scheduling for Baseline method
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Baseline
Valve-switching : 336 (116/220)

Application complete time : 31.5 (s)

SMCMF
Valve-switching : 228 (68/160)
Application complete time : 28.5 (s)







Experimental Settings

e |[mplement our algorithm in C++ language on a PC with

Core2 Quad processors at 2.66GHz and 3.25GB of
RAM

e Compare set-based minimum cost maximum flow

binding algorithm with list scheduling based baseline
method

e Test on several synthetic benchmarks

— Adjust operation numbers from 7 to 8191 and fix resource
constraint as 20

— Adjust resource constraint from 10 ~ 100 and fix operation
numbers as 1023
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Complete time (K sec.)
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Conclusion

e The valve-switching activities for the components such
as mixer and storage are modeled

¢ A set-based minimum cost maximum flow (SMCMF)
binding algorithm is proposed

® The experimental results shows that set-based
minimum cost maximum flow binding algorithm not only
minimizes the valve-switching amount but also reduces
the application complete time
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