
Optimal Partition with Block-Level

Parallelization in C-to-RTL Synthesis for

Streaming Applications

 Authors: Shuangchen Li, Yongpan Liu, X.Sharon Hu,

Xinyu He, Pei Zhang, and Huazhong Yang

2013/01/23

Outline

• Introduction

• Overview

• MILP-Based Solution

• Heuristic Solution

• Experimental Evaluation

• Conclusions and Future work

2

• Well-developed software

libraries

• Low speed, high power

Introduction: Background

3

• Application complexity

increasing

• MPSoCs architecture

• Hardware design

complexity

Introduction: Background (cont’d)

• This challenge is now new. However,

– Ever increasing design gap

– Progression of EDA tools

4

How to rapidly design hardware from

existing software algorithms?

1970s

Physical

level

Synthesis level

1980s

Gate level

RTL level

1990s

System

level

Mid-1990s

1
9

8
1

1
9

8
5

1
9

8
9

1
9

9
3

1
9

9
7

2
0

0
1

2
0

0
5

2
0

0
9

2
0

1
3

2
0

1
7

2
0

2
1

2
0

2
5

log

Technology

capabilities

Moore lo
w HW design

productivity

Gates/Chip

HW design gap

time

[29]

A 3g/4g MIMO wireless systems [7]

Introduction: Motivation

• C2RTL tools are promising

– A number of C2RTL tools

– A lot of successful stories

5

……
A DVB-SH Turbo Decoder [8]

A face detection system [9]

Introduction: Motivation (cont’d)

• However, state-of-the-art C2RTL tools suffer from:

– Low Quality of results (QoR) for large C programs

– System-level optimization options are limited

6

A Reed-Solomon decoding [28]
A JPEG encoder [10]

Flatten

approach

Hierarchical

approach
speedup

Cycles 42,475,202 4,070,603 10.43x

Clock 69.74 74.2 1.06x

Outline

• Introduction

• Overview

• MILP-Based Solution

• Heuristic Solution

• Experimental Evaluation

• Conclusions and Future work

7

Overview: Our work

• Given

– a large C program for a streaming application

– system constraints (latency, area, …)

• Determine

– how to partition the code into pipelined blocks

– which blocks should be parallelized

• The objectives

– Improve synthesis result quality

– Provide more system-level optimization options

8

Partition

Parallelization

Overview: Design flow

• STEP 1:

– We use eXCite here

• STEP 2:

– Determine partition

and parallelization

• STEP 3:

– Synthesize each

block with a C2RTL

tool

• STEP 4:

– Construct the

complete system

9

C programs need to be

synthesized

Throughput and

Area constraints

Extract parameters of N functionsSTEP 1:

Optimize partition and parallelization

STEP 2:

Block-level parallelization

F
3

F
4

F
5

Partition

Block1-1 FN…
F2F1

F2F1 Block1-2
Block2 Blockm

Synthesize blocks by a C2RTL tool (eXCite)STEP 3:

Assemble the modules into a single design

STEP 4:

F
IF

O

…

PE2PE1

Module

1-1

Controller

M
o

d
u

le
 2

Module

1-2 M
o

d
u

le
 m

F
IF

O

F
IF

O

PEm

Structure of the

final system

Overview: An example

10

main(){

 F1(a,b);

 F2(b,c);

 F3(c,d);

 F4(d,e);

 F5(e,f);

 F6(f,g);

 F7(g,h);

 F8(h,i);

}

C program

P
a

rt
it

io
n

Module 1

(from F1,F2,F3)

Module 2

(from F4)

Module 3

(from F5,F6)

Module 4

(from F7,F8)

FIFO

FIFO

FIFO

Synthesized HDL

P
a

ra
ll
e

li
z
a

ti
o

n

• Given a C program:

– In the straight-line style

• Given constraints:

– System throughput and area

• Partition:

– Which functions should be

synthesized together as one

pipeline stage

• Parallelization:

– Which synthesized modules

should be parallelized

Overview: Challenges

• The design space is large:

– Partition has a great impact on throughput and area

– Parallelization has a great impact on throughput and area

– The Pareto optimal solutions

• The importance to simultaneously consider partition

and parallelization:

– The constraints are for the system after both partition and

parallelization

– If optimizing them separately, it is not clear how to apply the

constraints to each problem individually

11

700 900 1100 1300 1500 1700 1900 2100

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Latency (r
all

-1)

A
re

a
 (

a
a
ll)

700 900 1100 1300 1500 1700 1900 2100

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Latency (r
all

-1)

A
re

a
 (

a
a
ll)

 W. BLP W.O. BLP 

700 900 1100 1300 1500 1700 1900 2100

1.2

1.4

1.6

1.8

2

2.2

2.4
x 10

4

Latency (r
all

-1)

A
re

a
 (

a
a
ll)

 W. BLP W.O. BLP 

A GSM case

Overview: Related work

12

• A somewhat related line of work is mapping C programs to

MPSoCs (software mapping):

– Blocks (or tasks) can be assigned to the same processor

– The processor area is given

Application Input Target Partition Parallelization

A. Hagiescu and et

al., in DAC2009[11]
Stream StreamIT MSoPC Manually Heuristic

J. Cong and et al.,

in DATE2012[12]
Stream C FPGA Manually ILP

Y. Liu and et al.,

in Intech Book[13]
Stream C FPGA Manually Heuristic

Y. Hara and et al.,

in IEICE[14]
General C FPGA ILP N/A

This work Stream C FPGA
Both MILP and Heuristic

(consider simultaneously)

Overview: Our Contribution

• A novel MILP based formulation

– Find a partition and parallelization solution with

maximum throughput or minimum area while

satisfying a given area or throughput constraint,

respectively

• An efficient heuristic algorithm

– Overcome the scalability challenge facing the

MILP formulation

• Validation of the proposed methods

– Developing FPGA based accelerators for seven

streaming applications

13

Outline

• Introduction

• Overview

• MILP-Based Solution

• Heuristic Solution

• Experimental Evaluation

• Conclusions and Future work

14

MILP-Based Solution: Formulation

• Given function parameters (Para)

– Area, throughput … of each function

• Determine (xn)

– Which functions should be clustered to form blocks

– Which blocks should be parallelized

• Objective:

– min. Area (aall(xn,Para)) or max. Throughput (rall(xn,Para))

• Subject to:

– Area constraints (aall<Areq)

– Throughput constraints (rall>Rreq)

– Connectivity constraints

15

MILP-Based Solution: Variable

• We use {xn}∈Z to represent partition and

parallelization:

– Partition: If xn=0: Fn and Fn+1 are in the same block

– Parallelization: If xn≠0: The parallelism degree of

block with Fn is xn

• We also use {yi,j}∈Binary to represent partition

– yi,j=1 means Fi,Fi+1…Fj are clustered

 xn

16

F2F1

F2F1

F6 F7

F6 F7

F6 F7

F1 F2 F3 F4 F5 F6 F7

F3 F5F4

{0, 2, 1, 0, 1, 0, 3 }

MILP-Based Solution: Details

• To calculate throughput rall (xn,Para):

• To calculate area aall (xn,Para):

• Connectivity constraints:

17

, , if 1all i j i jr r y  (1)
, , , ,

,

, ,1/ max{ , } otherwi

/

se

j i j i j j i j i j

in outi j

i j i j

x y T x y P
r

T T


 


(2)

/ / / /

, ,

1

((1))
j Ni N

le mem le mem le mem le mem

all fifo j j i j i j

i j i

a a x O x A y


 

    (3)

,

1

,

1

1 when 0

i n

i n n

i

i n

n i n

i

y x

x y






















(4)

1

, 1 ,

1

[2,]
i j i N

i j j i

i i j

y y j N
  



 

    (5)

, , ,

1

 1 [1,]
i j i N

i j j i j j

i i j

y y y j N
 

 

      (6)

Outline

• Introduction

• Overview

• MILP-Based Solution

• Heuristic Solution

• Experimental Evaluation

• Conclusions and Future work

18

Heuristic Solution: Overview

19

• Motivation:

– MILP is not scalable

– Bad feasible regions may incur long running time even

when N is small

• Consider partition and oarallelization

separately (constructive algorithm):

– Parallelization before partition to increase throughput:

Incx()

– Partition for the given parallelization to reduce area:

Clust()

– Implement Incx() and Clust() in a backtracking

iterative way

Heuristic Solution: Algorithm

20

• Incx(): Parallelization before Partition to increase throughput

• Clust(): Partition for the given Parallelization to reduce area

Do Incx() until Rreq is satisfied

Clust()

Calculate rall and aall

Does aall

violate Areq?

Incx()

No

Backtrack to last

parallelization strategy

Yes

Is this situation

considered yet?

Done

Yes

No

Heuristic Solution: Algorithm (cont’d)

21

• Incx(), Parallelization before Partition:

– Increase the parallelization degree of the bottleneck

function

• Clust(), Partition under the given Parallelization:

– Model the blocks and their connections as a graph

– Convert the problem to a shortest path problem

 B1,1

B1,2

B1,3

B2,3

B2,2 B3,3

Begin

END

A1,1 A2,2

A3,3

A1,1
0

0

A2,3A1,2

Outline

• Introduction

• Overview

• MILP-Based Solution

• Heuristic Solution

• Experimental Evaluation

• Conclusions and Future work

22

Experiments: Set up

23

• 7 Benchmark [21]:

– ADPCM

– JPEG encoder/decoder

– AES encryption/decryption

– GSM

– Filter Groups

• Environment & flow:

– C2RTL: eXCite

– Logic synthesis: Quartus II

(cyclone II)

– Simulation: Modelsim

eXCite C2RTL tool:

modeling

Our solution:

Optimize partition

and parallelization

eXCite C2RTL tool:

Implement hardware

Altera Quartus tool:

Area evaluation

Mentor Modelsim tool:

Throughput evaluation

Experiments: Validate proposed method

24

• Min. area for GSM case

– Heuristic solutions differ from the MILP results by

2.3% on average

25

• Min. Area for 7 benchmarks

– Heuristic with a difference of 7.5% on average

Exp.: Validate proposed method (cont’d)

Experiments: Running time

26

• Running time:

– The heuristic solutions are worse by 7.2% on average

Outline

• Introduction

• Overview

• MILP-Based Solution

• Heuristic Solution

• Experimental Evaluation

• Conclusions and Future work

27

Conclusions and Future work

28

• Conclusions :
– Our work adopts a hierarchical framework with

automatic C-code partition and block-level

parallelization

– Both an MILP-based solution and a heuristic solution

are proposed

– Experimental results obtained from seven real

applications show that our approaches are effective

• Future work:
– Extend the solution to C program with feedback

– Taking power into consideration

Reference

29

• [1]-[27] is listed in the paper

• [28] “Comparison of high level design methodologies for

algorithmic ips: Bluespec and c-based synthesis,” Ph.D.

dissertation, MIT, 2009

• [29] “ITRS roadmap on Design” 2011 Edition

THANK YOU!

30

MILP-Based Solution: Linearization

• Linearize xjyi,j : zi,j=xjyi,j

• Linearize Equation (1):

• Linearize Equation (2):

• Linearize Equation (4):

31

, , ,

, , ,(1) (1)

i j i j i j

j i j i j j i j

My z My

x M y z x M y

  

     

, ,(1) 1all i j i jr r M y i j N      

, ,

,

, ,

/

1/ max{ , }

i j i j

in outi j

i j i j

z T
r

T T


 


, , ,

1 1

 · ,
i n i n

i n n i n n i j

i i

y x M y x y binary
 

 

     N

Exp.: Validate proposed method (cont’d)

32

• Min. area or Max. throughput for GSM

