

Tsinghua University

Optimal Partition with Block-Level Parallelization in C-to-RTL Synthesis for Streaming Applications

Authors: Shuangchen Li, Yongpan Liu, X.Sharon Hu, Xinyu He, Pei Zhang, and Huazhong Yang 2013/01/23

Outline

- Introduction
- Overview
- MILP-Based Solution
- Heuristic Solution
- Experimental Evaluation
- Conclusions and Future work

Introduction: Background

How to rapidly design hardware from existing software algorithms?

Introduction: Background (cont'd)

How to rapidly design hardware from existing software algorithms?

- This challenge is now new. However,
 - Ever increasing design gap
 - Progression of EDA tools

清著大学

Introduction: Motivation

- C2RTL tools are promising
 - A number of C2RTL tools

Introduction: Motivation (cont'd)

- *However*, state-of-the-art C2RTL tools suffer from:
 - Low Quality of results (QoR) for large C programs
 - System-level optimization options are limited

Control and optimization at the system level are needed

Outline

- Introduction
- Overview
- MILP-Based Solution
- Heuristic Solution
- Experimental Evaluation
- Conclusions and Future work

Overview: Our work

- Given
 - a large C program for a streaming application
 - system constraints (latency, area, ...)

Determine

- how to partition the code into pipelined blocks Partition
- which blocks should be parallelized Parallelization

The objectives

- Improve synthesis result quality
- Provide more system-level optimization options

Overview: Design flow

Overview: An example

10

Overview: Challenges

• The design space is large:

- Partition has a great impact on throughput and area
- Parallelization has a great impact on throughput and area
- The Pareto optimal solutions

Overview: Related work

	Application	Input	Target	Partition	Parallelization
A. Hagiescu and et al., in DAC2009[11]	Stream	StreamIT	MSoPC	Manually	Heuristic
J. Cong and et al., in DATE2012[12]	Stream	С	FPGA	Manually	ILP
Y. Liu and et al., in Intech Book[13]	Stream	С	FPGA	Manually	Heuristic
Y. Hara and et al., in IEICE[14]	General	С	FPGA	ILP	N/A
This work	Stream	С	FPGA	Both MILP and Heuristic (consider simultaneously)	

 A somewhat related line of work is mapping C programs to MPSoCs (software mapping):

- Blocks (or tasks) can be assigned to the same processor
- The processor area is given

Overview: Our Contribution

- A novel <u>MILP</u> based formulation
 - Find a partition and parallelization solution with maximum throughput or minimum area while satisfying a given area or throughput constraint, respectively

An efficient <u>heuristic</u> algorithm

- Overcome the scalability challenge facing the MILP formulation
- Validation of the proposed methods
 - Developing FPGA based accelerators for seven streaming applications

Tsinghua University

Outline

- Introduction
- Overview
- MILP-Based Solution
- Heuristic Solution
- Experimental Evaluation
- Conclusions and Future work

MILP-Based Solution: Formulation

- Given function parameters (Para)
 - Area, throughput ... of each function
- Determine (x_n)
 - Which functions should be clustered to form blocks
 - Which blocks should be parallelized
- Objective:
 - min. Area $(a_{all}(x_n, Para))$ or max. Throughput $(r_{all}(x_n, Para))$

Subject to:

- Area constraints (a_{all} <A $_{req}$)
- Throughput constraints (r_{all} >R_{req})
- Connectivity constraints

MILP-Based Solution: Variable

 We use {x_n}∈Z to represent partition and parallelization:

– Partition: If $x_n=0$: F_n and F_{n+1} are in the same block

- Parallelization: If $x_n \neq 0$: The parallelism degree of block with F_n is x_n
- We also $f_1 \Rightarrow F_2$, F_3 if F_4 , F_5 er F_6 set F_7 partition $- y_{i,j} = 1 \text{ means } F_i F_{i,j} + \dots F_j \Rightarrow \text{clustere} \left(\begin{array}{c} F_6 & F_7 \\ F_1 & F_2 \end{array} \right) \left(\begin{array}{c} F_1 & F_2 \\ F_1 & F_2 \end{array} \right) \left(\begin{array}{c} F_3 & F_4 & F_5 \end{array} \right) \left(\begin{array}{c} F_6 & F_7 \\ F_6 & F_7 \end{array} \right) \left(\begin{array}{c} F_7 & F_7 \end{array} \right) \left(\begin{array}{$

MILP-Based Solution: Details

• To calculate throughput $r_{all}(x_n, Para)$:

$$r_{all} \le r_{i,j} \quad \text{if } y_{i,j} = 1 \quad (1) \quad r_{i,j} = \begin{cases} x_j y_{i,j} / T_{i,j} & x_j y_{i,j} < P_{i,j} \\ 1 / \max\{T_{i,j}^{in}, T_{i,j}^{out}\} & \text{otherwise} \end{cases}$$
(2)

• To calculate area $a_{all}(x_n, Para)$:

$$a_{all}^{le/mem} = a_{fifo}^{le/mem} + \sum_{i=1}^{i=N} \sum_{j=i}^{j=N} ((x_j - 1)O^{le/mem} + x_j A_{i,j}^{le/mem}) y_{i,j}$$
(3)

• Connectivity constraints:

NI

Tsinghua University

Outline

- Introduction
- Overview
- MILP-Based Solution
- Heuristic Solution
- Experimental Evaluation
- Conclusions and Future work

Heuristic Solution: Overview

Motivation:

- MILP is not scalable
- Bad feasible regions may incur long running time even when N is small
- Consider partition and oarallelization separately (constructive algorithm):
 - Parallelization before partition <u>to increase throughput</u>: Incx()
 - Partition for the given parallelization <u>to reduce area</u>: Clust()
 - Implement Incx() and Clust() in a backtracking iterative way

Heuristic Solution: Algorithm

• *Incx()*: Parallelization before Partition *to increase throughput*

20

Clust(): Partition for the given Parallelization to reduce area

消害大学 Tsinghua University

Heuristic Solution: Algorithm (cont'd)

- Incx(), Parallelization before Partition:
 - Increase the parallelization degree of the bottleneck function
- **Clust()**, Partition under the given Parallelization:
 - Model the blocks and their connections as a graph
 - Convert the problem to a shortest path problem

Outline

- Introduction
- Overview
- MILP-Based Solution
- Heuristic Solution
- Experimental Evaluation
- Conclusions and Future work

Experiments: Set up

• 7 Benchmark [21]:

- ADPCM
- JPEG encoder/decoder
- AES encryption/decryption
- GSM
- Filter Groups

Environment & flow:

- C2RTL: eXCite
- Logic synthesis: Quartus II (cyclone II)
- Simulation: Modelsim

清華大学 Tsinghua University

Experiments: Validate proposed method

Tsinghua University

诸著大学

Exp.: Validate proposed method (cont'd)

• Min. Area for 7 benchmarks

NI

= Heuristic with a difference of 7.5% on average 25

清莱大学 Tsinghua University

Experiments: Running time

• Running time:

Bench	Objective		Constraints	Time (sec)		Result (r_{all}^{-1}, a_{all})	
-mark	Objective	$R_{\rm req}^{-1}$	$A_{ m req}$	MILP	Heu.	MILP	Heu.
	$\min a_{ ext{all}}$	1000	—	9.089	0.025	987, 15937	833, 18775
GSM	$\max r_{e^{H}}$	3000	17000	37.648	0.192	1208, 16008	1442, 15171
(N=10)	$\max r_{\mathrm{all}}$	150(09000/100000	41.135	0.098	833, 18775	1024, 18031
	$\max r_{\mathrm{all}}$	—	18900/30000	Failden	ê09ħ	Failed	1024, 18031
Filter	$\min a_{ ext{all}}$	19000	—	355.80	0.026	18548, 20829	82 48, 20829
groups	$\max r_{\mathrm{all}}$	—	50000	395.47	0.025	17102, 26571	10372, 28994
(N=14)	$\max r_{\mathrm{all}}$	—	30000/25000	Failed	0.121	Failed	10222, 23907

¹ With two separated constraints for A_{req}^{le} and A_{req}^{mem} , respectively.

- The heuristic solutions are worse by 7.2% on average

Outline

- Introduction
- Overview
- MILP-Based Solution
- Heuristic Solution
- Experimental Evaluation
- Conclusions and Future work

Conclusions and Future work

- Conclusions :
 - Our work adopts a hierarchical framework with automatic C-code partition and block-level parallelization
 - Both an MILP-based solution and a heuristic solution are proposed
 - Experimental results obtained from seven real applications show that our approaches are effective
- Future work:
 - Extend the solution to C program with feedback
 - Taking power into consideration

Reference

- [1]-[27] is listed in the paper
- [28] "Comparison of high level design methodologies for algorithmic ips: Bluespec and c-based synthesis," Ph.D. dissertation, MIT, 2009
- [29] "ITRS roadmap on Design" 2011 Edition

THANK YOU!

MILP-Based Solution: Linearization

• Linearize
$$\mathbf{x}_{j}\mathbf{y}_{i,j}$$
: $\mathbf{z}_{i,j}=\mathbf{x}_{j}\mathbf{y}_{i,j}$
 $-My_{i,j} \leq z_{i,j} \leq My_{i,j}$

$$x_{j} - M(1 - y_{i,j}) \le z_{i,j} \le x_{j} + M(1 - y_{i,j})$$

• Linearize Equation (1):

$$r_{all} \leq r_{i,j} + M(1 - y_{i,j}) \quad \forall 1 \leq i \leq j \leq N$$

• Linearize Equation (2):

$$r_{i,j} \leq \begin{cases} z_{i,j} / T_{i,j} \\ 1 / \max\{T_{i,j}^{in}, T_{i,j}^{out}\} \end{cases}$$

• Linearize Equation (4):

$$\sum_{i=1}^{i=n} y_{i,n} \le x_n \le M \cdot \sum_{i=1}^{i=n} y_{i,n} \quad x_n \in \mathbf{N}, \ y_{i,j} \in binary$$

清著大学

Tsinghua University

NI

Exp.: Validate proposed method (cont'd)

• Min. area or Max. throughput for GSM

		Constraints		MILP vs. Heuristic result			
	Objective	$R_{\rm req}^{-1}$	$A_{\rm req}$	$\{x_n\}$	$r_{\rm all}^{-1}$	$a_{\rm all}$ or $a_{\rm all}^{\rm le}/a_{\rm all}^{\rm mem}$	
MILP		1000		{0,2,1,0,2,0,2,0,0,1]	987	15937	
Heuristic	$\min a_{\mathrm{all}}$	1000	—	{2,2,0,2,2,0,2,0,0,1]	833	18775	
MILS	lutions	1600	-	{1,0,1,1,1,1,0,0,0,1]	1545	12132	
Heuristic				{1,0,1,1,1,1,0,0,0,1]	1545	12132	
MILP				$\{1, 0, 1, 1, 1, 1, 0, 0, 0, 1\}$	1545	12132	
Heuristic	$\max r_{\mathrm{all}}$	_	15000	$\{1,0,1,1,1,1,1,0,0,1\}$	1545	12132	
MILP	$\max r_{\mathrm{all}}$	_	19000	$\{0,2,1,0,2,2,1,0,0,1\}$	9845	Set7415	
Heuristic				{0,2,2,0,2,1,1,0,0,1]	1204	1834 9 S	
MILP	$\max r_{ m all}$	_	¹ 19000	{2,2,0,2,2,0,2,0,0,1]	987	17094/67284	
Heuristic			/70000	$\{0,0,2,0,2,1,1,0,0,1\}$	1204	19927/52208	

12

江东

Tsinghua University