Multi-Mode Pipelined MPSoCs for
Streaming Applications

Haris Javaid Daniel Witono Sri Parameswaran
January 23, 2013

School of Computer Science and Engineering
The University of New South Wales
AUSTRALIA

THE UNIVERSITY OF NE UTH WALE
SYDNEY AUSTRALIA

Introduction

® Multimedia platforms are increasingly becoming heterogeneous
® Single-/Multi-processor host system
® Graphics and streaming accelerators
® Examples: Tegra, OMAP, etc.

® Streaming accelerators
® Optimized at design-time for performance and energy efficiency
® Based upon pipelined MPSoCs rather than ASICs in this work

S

Multimedia Platform

- Graphics

Accelerator

S

s
S,
Single-/Multi-processor
S2 @ @ Host System
x)
3

¥ SA3 I/O Components

@ B4 Other Compnents

SA: Streaming Accelerator

S4

Pipelined MPSoCs

® Pipelined MPSoCs
® Task- and pipeline-level parallelisms (data-flow structure)

® Data- and instruction-level parallelisms (SIMD and VLIW
Instructions)

g int main(){
];('3',-(int main(){ @
Custatmizénffocessors
. int main(){ :
T int main(){
5 int main(y

}...

Research Aim

® All the streaming accelerators may not be active at all times

® Either browse pictures or watch videos (H.264 and JPEG not used
simultaneously)

® Differing standards (H.264, MPEG, VCL1 not used simultaneously)

® Multi-mode accelerator
® Combine mutually exclusive accelerators to reduce area footprint
® Simultaneously active accelerators are not combined

® Our proposal

® Multi-mode Pipelined MPSoCs — a mode refers to execution of one
streaming application

® Combine application graphs, and then derive a multi-mode
pipelined MPSoC

An Example

® Assumptions

® An application graph represents the corresponding pipelined
MPSoC

® Notation m.n, means n-th node in m-th stage of x-th application

Application 1 Application 2 Merged Graph

Multi-mode Pipelined
MPSoC

Problem Statement

® Given X application graphs, the goal is to combine them into
one graph such that the pipelined MPSoC derived from it has
minimal area

® [n the merged graph
® Minimize the number of nodes: cost of processors
® Minimize the number of edges: cost of processor/FIFO ports
® Minimize the capacity of edges: cost of FIFO sizes

® Merging applications graph is an NP complete problem
[reference in paper]

® Our Solution

® Near-optimal but fast heuristics
o MaxS
o MaxN

® Optimal heuristic
o MaxC

Related Work

® Data-path merging in digital design
® Bipartite graph matching [DATE'01]
® Subsequence/Substring matching [DAC’'04]
® Finding maximum clique [IEEE TCAD’05] [IEEE TCAD’09]

® Typical multi-mode systems [references in paper]
® Fixed platform

® Involves selection of processing elements, and mapping and
scheduling

® Application graphs merging
® Merging multiple uses-cases of applications [ACM TODAES’08]
® Merging based upon subsequence/substring matching [JRC'12]

® Our Contribution
® Multi-mode pipelined MPSoCs
® Use of maximum clique approach to find optimal merging
® Three heuristics to tradeoff accuracy with running time

Design Flows

Application

L —

!

| Applications | D

Application-level
Balancing

merge/split tasks

Application-level Balancing

merge/split tasks of each
application separately

!

|

Application Graphs Merging

One-to-one Mapping

:

!

One-to-one Mapping

System-level
Balancing

customize processors

|

|

System-level Balancing

customize processors of each
application separately

Pipelined MPSoC

}

Multi-mode

Pipelined MPSoC
o =

Heuristic MaxS (Max. Stages)

® Works on application graphs’ topologies

® Combines nodes on a stage by stage basis

Application 2 Merged Graph

Heuristic MaxS (Max. Stages)

® Works on application graphs’ topologies

® Combines nodes on a stage by stage basis

The higher of the two
capacities is used

@ 1.1:2.1,
1.1:2.1

Application 1

Application 2 Merged Graph

Heuristic MaxS (Max. Stages)

® Works on application graphs’ topologies

® Combines nodes on a stage by stage basis

Application 1

Application 2 Merged Graph

Heuristic MaxN (Max. Nodes)

® Nodes in the merged graph should not exceed the application
with maximum number of nodes

® Combines nodes in a breadth-first manner

® Exhausts all permutations of merging graphs

Application 1

Application 2

Heuristic MaxN (Max. Nodes)

® Nodes in the merged graph should not exceed the application
with maximum number of nodes

® Combines nodes in a breadth-first manner

® Exhausts all permutations of merging graphs

Application 2

Heuristic MaxN (Max. Nodes)

® Nodes in the merged graph should not exceed the application
with maximum number of nodes

® Combines nodes in a breadth-first manner

® Exhausts all permutations of merging graphs

Application 1

Application 2

Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph

Application 1

Application 2
Partial Compatibility Graph

Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph

® Constructs merged graph

N\

X

Application 1

Application 2
Partial Compatibility Graph

Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph

Application 1

Application 2
Partial Compatibility Graph

Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph

Maximum
Clique

. Each node has a weight which
iIndicates area saving for that
particular merging

. Area saving is calculated using
the cost functions provided by
the designer

Partial Compatibility Graph

Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph

Maximum
@) e
N\

Application 1

Merged Graph

Experimental Setup

® Benchmarks

Application # Nodes
JPEG Enc 7
JPEG Dec)

MP3 Enc)
FFT 12
BF 12
TDE 13

Synl 14
Syn2 14
Syn3 17

® Pipelined MPSoCs
® Used LX3 processors with queue interface from Tensilica

® Cliquer tool to find maximum weight clique

Results (Nodes)

Merge # Nodes
No Merge MaxS MaxN MaxC
JPEGenc/dec 12 9 7 7
JPEGenc/MP3enc 12 8 7 7
JPEGdec/MP3enc 10 6 5 5
JPEGenc/dec/MP3enc 17 9 7 7
FFT/BF 24 14 12 12
FFT/TDE 26 18 13 13
BF/TDE 26 17 13 13
FFT/BF/TDE 38 19 13 13
Synl/Syn2 28 18 14 14
Syn/Syn3 31 21 17 -
Syn2/Syn3 31 26 17 -

Results (Edges)

Merge # Edges
No Merge MaxS MaxN MaxC
JPEGenc/dec 14 12 | 12 [&8]
JPEGenc/MP3enc 13 10 11 8
JPEGdec/MP3enc 11 7 8 6
JPEGenc/dec/MP3enc 19 12 13 8
FFT/BF 24 16 14 13
FFT/TDE 25 18 22 14
BF/TDE 25 17 20 14
FFT/BF/TDE 37 21 23 15
Synl/Syn2 30 24 29 20
Syn/Syn3 35 25 32 -
Syn2/Syn3 35 23 31 -

Results (Running Time)

Merge Time
No Merge MaxS MaxN MaxC
JPEGenc/dec - <ls <ls 1m
JPEGenc/MP3enc - <ls <ls 1m
JPEGdec/MP3enc - <ls <ls 1m
JPEGenc/dec/MP3enc 1s 2S 3m
FFT/BF 1s 1s om
FFT/TDE 1s 1s 5m
BF/TDE 1s 1s om
FFT/BF/TDE 1s 2S
Synl/Syn2 1s 1s
Syn/Syn3 1s 1s
Syn2/Syn3 1s 1s

Results (Area Saving)

® Merging cost functions

® Two nodes saves a processor
® Two edges saves two FIFO ports + size of smaller FIFO

[62% Processor Area 57% FIFO Area]

Processor F/~ FIFO #P - #Ports

Ul
o
!

IS
o

Saving (#ports)

Saving (%gates)
w
o

N
o

axN B MaxC
I
Throughput degradation: 1%
Latency degradation: 2%

Ii Increase in energyl/iteration: 3%
P F#PP F#P P F #P P F #P P F #P P F#PP_F-#PP F #P
(a) (b) (c) (d) (e) (f) (g) (h)

(a) JPEGenc/dec (b) JPEGenc/MP3enc (c) JPEGdec/MP3enc (d)JPEGenc/dec/MP3enc
(e) FFT/BF () FFT/TDE (g) BF/TDE (h) FFT/BF/TDE

=
o

Conclusions

® Multi-mode pipelined MPS0Cs can be designed by merging of
application graphs

® The proposed heuristics saved up to

® 62% processor area
® 57% FIFO area
® 44 processor/FIFO ports

® Miniscule degradation in performance and energy efficiency

® Future work
® Consider memories
® Consider code size
® Consider simultaneously executing accelerators

Thank You!

Heuristic MaxC (Max. Weight Clique)

Introduction

® Multimedia platforms are increasingly becoming heterogeneous:
® Single-/Multi-processor host system
® Graphics and streaming accelerators

® Streaming accelerators
® Optimized at design-time for performance and energy efficiency
® Based upon pipelined MPSoCs rather than ASICs in this work

——

11

S1

— N Multimedia Platform
Single-/Multi-processor
21 22 » S2 Host System
X K
o e

: - Graphics
1 ’ - Accelerator

2 SA3 I/0 Components
@ 8R4 Other Compnents

SA: Streaming Accelerator

31

4,

Streamlt Application Pipelined MPSoC

Pipelined MPSoCs

® Pipelined MPSoCs
® Task- and pipeline-level parallelisms (data-flow structure)

® Data- and instruction-level parallelisms (SIMD and VLIW
Instructions)

g int main(){
];('3',-(int main(){ @
Custatmizénffocessors
. int main(){ :
T int main(){
5 int main(y

}...

