
Multi-Mode Pipelined MPSoCs for
Streaming Applications

Haris Javaid Daniel Witono Sri Parameswaran

January 23, 2013

School of Computer Science and Engineering

The University of New South Wales

AUSTRALIA

 Multimedia platforms are increasingly becoming heterogeneous

 Single-/Multi-processor host system

 Graphics and streaming accelerators

 Examples: Tegra, OMAP, etc.

 Streaming accelerators

 Optimized at design-time for performance and energy efficiency

 Based upon pipelined MPSoCs rather than ASICs in this work

Introduction

P2,1

P3,1

P1,1

P2,2

S1

S2

S3

P4,1S4

 Pipelined MPSoCs

 Task- and pipeline-level parallelisms (data-flow structure)

 Data- and instruction-level parallelisms (SIMD and VLIW
instructions)

Pipelined MPSoCs

int main(){

…

for(…){

 colorconversion();

 motionestimation();

 transformation();

 quantization();

 …

}

int main(){

 …

}
int main(){

 …

}
int main(){

 …

}
int main(){

 …

}
int main(){

 …

}
int main(){

 …

} P5

P3

P4

P2

P1

P6

P5

P3

P4

P2

P1

P6

Customize Processors

 All the streaming accelerators may not be active at all times

 Either browse pictures or watch videos (H.264 and JPEG not used
simultaneously)

 Differing standards (H.264, MPEG, VC1 not used simultaneously)

 Multi-mode accelerator

 Combine mutually exclusive accelerators to reduce area footprint

 Simultaneously active accelerators are not combined

 Our proposal

 Multi-mode Pipelined MPSoCs – a mode refers to execution of one
streaming application

 Combine application graphs, and then derive a multi-mode
pipelined MPSoC

Research Aim

 Assumptions

 An application graph represents the corresponding pipelined
MPSoC

 Notation m.nx means n-th node in m-th stage of x-th application

An Example

3.11

4.11

1.11

2.11 2.21

4.12

1.12

2.12

3.12 3.22
3.11

4.12

1.11

2.12

2.11

3.12

2.21

3.22

1.12

4.11

P3,1

P4,1

P2,1

P3,2

P5,1

P1,1

Application 1 Application 2 Merged Graph

Multi-mode Pipelined

MPSoC

Mode 2

Mode 1

 Given X application graphs, the goal is to combine them into
one graph such that the pipelined MPSoC derived from it has
minimal area

 In the merged graph

 Minimize the number of nodes: cost of processors

 Minimize the number of edges: cost of processor/FIFO ports

 Minimize the capacity of edges: cost of FIFO sizes

 Merging applications graph is an NP complete problem
[reference in paper]

 Our Solution

 Near-optimal but fast heuristics
 MaxS
 MaxN

 Optimal heuristic
 MaxC

Problem Statement

 Data-path merging in digital design

 Bipartite graph matching [DATE’01]

 Subsequence/Substring matching [DAC’04]

 Finding maximum clique [IEEE TCAD’05] [IEEE TCAD’09]

 Typical multi-mode systems [references in paper]

 Fixed platform

 Involves selection of processing elements, and mapping and
scheduling

 Application graphs merging

 Merging multiple uses-cases of applications [ACM TODAES’08]

 Merging based upon subsequence/substring matching [JRC’12]

 Our Contribution

 Multi-mode pipelined MPSoCs

 Use of maximum clique approach to find optimal merging

 Three heuristics to tradeoff accuracy with running time

Related Work

Design Flows

System-level
Balancing

customize processors

Application-level
Balancing

merge/split tasks

One-to-one Mapping

Application-level Balancing

merge/split tasks of each
application separately

Application Graphs Merging

One-to-one Mapping

System-level Balancing

customize processors of each
application separately

Application

Pipelined MPSoC

Applications

Multi-mode
Pipelined MPSoC

 Works on application graphs’ topologies

 Combines nodes on a stage by stage basis

Heuristic MaxS (Max. Stages)

4.12

3.22

2.21

1.11

1.12

1.11

1.12

1.11

1.12

2.11

2.12

3.11

3.12

1.1:2.11

1.1:2.12

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2 Merged Graph

 Works on application graphs’ topologies

 Combines nodes on a stage by stage basis

Heuristic MaxS (Max. Stages)

4.12

3.22

2.21

1.11

1.12

1.11

1.12

1.11

1.12

2.11

2.12

3.11

3.12

1.1:2.11

1.1:2.12

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2 Merged Graph

The higher of the two
capacities is used

 Works on application graphs’ topologies

 Combines nodes on a stage by stage basis

Heuristic MaxS (Max. Stages)

4.12

3.22

2.21

1.11

1.12

1.11

1.12

1.11

1.12

2.11

2.12

3.11

3.12

1.1:2.11

1.1:2.12

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2 Merged Graph

App 1

App 2

 Nodes in the merged graph should not exceed the application
with maximum number of nodes

 Combines nodes in a breadth-first manner

 Exhausts all permutations of merging graphs

Heuristic MaxN (Max. Nodes)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

4.12

1.11

1.12

2.11

2.12

2.21

3.12

3.11

3.22

1.1:2.21

1.1:2.11

1.1:2.12

 Nodes in the merged graph should not exceed the application
with maximum number of nodes

 Combines nodes in a breadth-first manner

 Exhausts all permutations of merging graphs

Heuristic MaxN (Max. Nodes)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

4.12

1.11

1.12

2.11

2.12

2.21

3.12

3.11

3.22

1.1:2.21

1.1:2.11

1.1:2.12

 Nodes in the merged graph should not exceed the application
with maximum number of nodes

 Combines nodes in a breadth-first manner

 Exhausts all permutations of merging graphs

Heuristic MaxN (Max. Nodes)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

4.12

1.11

1.12

2.11

2.12

2.21

3.12

3.11

3.22

1.1:2.21

1.1:2.11

1.1:2.12

App 1

 Finds optimal merging

 Creates a compatibility graph

 Finds maximum clique of compatibility graph

 Constructs merged graph

Heuristic MaxC (Max. Weight Clique)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

1.11

2.12

3.11

4.12

2.11

3.12

2.21

3.22

1.11

4.12

Partial Compatibility Graph

1.1:2.11

2.1:3.12

 Finds optimal merging

 Creates a compatibility graph

 Finds maximum clique of compatibility graph

 Constructs merged graph

Heuristic MaxC (Max. Weight Clique)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

1.11

2.12

3.11

4.12

2.11

3.12

2.21

3.22

1.11

4.12

Partial Compatibility Graph

1.1:2.11

2.1:3.12

 Finds optimal merging

 Creates a compatibility graph

 Finds maximum clique of compatibility graph

 Constructs merged graph

Heuristic MaxC (Max. Weight Clique)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

1.11

2.12

3.11

4.12

2.11

3.12

2.21

3.22

1.11

4.12

Partial Compatibility Graph

1.1:2.11

2.1:3.12

 Finds optimal merging

 Creates a compatibility graph

 Finds maximum clique of compatibility graph

 Constructs merged graph

Heuristic MaxC (Max. Weight Clique)

1.11

2.12

3.11

4.12

2.11

3.12

2.21

3.22

1.11

4.12

Partial Compatibility Graph

1.1:2.11

2.1:3.12

Maximum

Clique

1. Each node has a weight which

indicates area saving for that

particular merging

2. Area saving is calculated using

the cost functions provided by

the designer

 Finds optimal merging

 Creates a compatibility graph

 Finds maximum clique of compatibility graph

 Constructs merged graph

Heuristic MaxC (Max. Weight Clique)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

1.11

2.12

3.11

4.12

2.11

3.12

2.21

3.22

1.11

4.12

Partial Compatibility Graph

1.1:2.11

2.1:3.12

Maximum

Clique

3.11

4.12

1.12

1.11

2.12

2.11

3.12

2.11

3.12

Merged Graph

App 1

 Benchmarks

 Pipelined MPSoCs

 Used LX3 processors with queue interface from Tensilica

 Cliquer tool to find maximum weight clique

Experimental Setup

Application # Nodes # Edges

JPEG Enc 7 9

JPEG Dec 5 6

MP3 Enc 5 5

FFT 12 12

BF 12 12

TDE 13 12

Syn1 14 15

Syn2 14 15

Syn3 17 20

Results (Nodes)

Merge # Nodes

No Merge MaxS MaxN MaxC

JPEGenc/dec 12 9 7 7

JPEGenc/MP3enc 12 8 7 7

JPEGdec/MP3enc 10 6 5 5

JPEGenc/dec/MP3enc 17 9 7 7

FFT/BF 24 14 12 12

FFT/TDE 26 18 13 13

BF/TDE 26 17 13 13

FFT/BF/TDE 38 19 13 13

Syn1/Syn2 28 18 14 14

Syn/Syn3 31 21 17 -

Syn2/Syn3 31 26 17 -

Results (Edges)

Merge # Edges

No Merge MaxS MaxN MaxC

JPEGenc/dec 14 12 12 8

JPEGenc/MP3enc 13 10 11 8

JPEGdec/MP3enc 11 7 8 6

JPEGenc/dec/MP3enc 19 12 13 8

FFT/BF 24 16 14 13

FFT/TDE 25 18 22 14

BF/TDE 25 17 20 14

FFT/BF/TDE 37 21 23 15

Syn1/Syn2 30 24 29 20

Syn/Syn3 35 25 32 -

Syn2/Syn3 35 23 31 -

Results (Running Time)

Merge Time

No Merge MaxS MaxN MaxC

JPEGenc/dec - <1s <1s 1m

JPEGenc/MP3enc - <1s <1s 1m

JPEGdec/MP3enc - <1s <1s 1m

JPEGenc/dec/MP3enc - 1s 2s 3m

FFT/BF - 1s 1s 5m

FFT/TDE - 1s 1s 5m

BF/TDE - 1s 1s 5m

FFT/BF/TDE - 1s 2s 12m

Syn1/Syn2 - 1s 1s 16h

Syn/Syn3 - 1s 1s >4d

Syn2/Syn3 - 1s 1s >4d

0

5

10

15

20

25

30

35

40

45

50

0

10

20

30

40

50

60

70

Sa
vi

n
g

(#
p

o
rt

s)

Sa
vi

n
g

(%
ga

te
s)

MaxS MaxN MaxC

FP #P FP #P FP #P FP #P FP #P FP #P FP #P FP #P

P - Processor F - FIFO #P - #Ports

(a) (b) (c) (d) (e) (f) (g) (h)

(a) JPEGenc/dec (b) JPEGenc/MP3enc (c) JPEGdec/MP3enc (d) JPEGenc/dec/MP3enc
(e) FFT/BF (f) FFT/TDE (g) BF/TDE (h) FFT/BF/TDE

 Merging cost functions

 Two nodes saves a processor

 Two edges saves two FIFO ports + size of smaller FIFO

Results (Area Saving)

62% Processor Area 57% FIFO Area 44 Processor/FIFO Ports

Throughput degradation: 1%

Latency degradation: 2%

Increase in energy/iteration: 3%

 Multi-mode pipelined MPSoCs can be designed by merging of
application graphs

 The proposed heuristics saved up to

 62% processor area

 57% FIFO area

 44 processor/FIFO ports

 Miniscule degradation in performance and energy efficiency

 Future work

 Consider memories

 Consider code size

 Consider simultaneously executing accelerators

Conclusions

Thank You!

Heuristic MaxC (Max. Weight Clique)

4.12

2.12

3.12 3.22

1.12

3.11

1.11

2.11 2.21

Application 1

Application 2

1.11

2.12

3.11

4.12

2.11

3.12

2.21

3.22

1.11

4.12

Partial Compatibility Graph

1.1:2.11

2.1:3.12

Maximum

Clique

3.11

4.12

1.12

1.11

2.12

2.11

3.12

2.11

3.12

Merged Graph

 Multimedia platforms are increasingly becoming heterogeneous:

 Single-/Multi-processor host system

 Graphics and streaming accelerators

 Streaming accelerators

 Optimized at design-time for performance and energy efficiency

 Based upon pipelined MPSoCs rather than ASICs in this work

Introduction

Multimedia Platform

Single-/Multi-processor
Host System

Graphics
Accelerator

I/O Components

Other Compnents

SA1

SA2

SA4

SA3

SA: Streaming Accelerator

P2,1

P3,1

P1,1

P2,2

S1

S2

S3

P4,1S4

11

2221

31

s1

j1

41

Pipelined MPSoC StreamIt Application

 Pipelined MPSoCs

 Task- and pipeline-level parallelisms (data-flow structure)

 Data- and instruction-level parallelisms (SIMD and VLIW
instructions)

Pipelined MPSoCs

int main(){

…

for(…){

 colorconversion();

 motionestimation();

 transformation();

 quantization();

 …

}

int main(){

 …

}
int main(){

 …

}
int main(){

 …

}
int main(){

 …

}
int main(){

 …

}
int main(){

 …

} P5

P3

P4

P2

P1

P6

P5

P3

P4

P2

P1

P6

Customize Processors

