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Introduction

® Multimedia platforms are increasingly becoming heterogeneous
® Single-/Multi-processor host system
® Graphics and streaming accelerators
® Examples: Tegra, OMAP, etc.

® Streaming accelerators
® Optimized at design-time for performance and energy efficiency
® Based upon pipelined MPSoCs rather than ASICs in this work
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Pipelined MPSoCs

® Pipelined MPSoCs
® Task- and pipeline-level parallelisms (data-flow structure)

® Data- and instruction-level parallelisms (SIMD and VLIW
Instructions)
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Research Aim

® All the streaming accelerators may not be active at all times

® Either browse pictures or watch videos (H.264 and JPEG not used
simultaneously)

® Differing standards (H.264, MPEG, VCL1 not used simultaneously)

® Multi-mode accelerator
® Combine mutually exclusive accelerators to reduce area footprint
® Simultaneously active accelerators are not combined

® Our proposal

® Multi-mode Pipelined MPSoCs — a mode refers to execution of one
streaming application

® Combine application graphs, and then derive a multi-mode
pipelined MPSoC




An Example

® Assumptions

® An application graph represents the corresponding pipelined
MPSoC

® Notation m.n, means n-th node in m-th stage of x-th application

Application 1 Application 2 Merged Graph

Multi-mode Pipelined
MPSoC




Problem Statement

® Given X application graphs, the goal is to combine them into
one graph such that the pipelined MPSoC derived from it has
minimal area

® [n the merged graph
® Minimize the number of nodes: cost of processors
® Minimize the number of edges: cost of processor/FIFO ports
® Minimize the capacity of edges: cost of FIFO sizes

® Merging applications graph is an NP complete problem
[reference in paper]

® Our Solution

® Near-optimal but fast heuristics
o MaxS
o MaxN

® Optimal heuristic
o MaxC




Related Work

® Data-path merging in digital design
® Bipartite graph matching [DATE'01]
® Subsequence/Substring matching [DAC’'04]
® Finding maximum clique [IEEE TCAD’05] [IEEE TCAD’09]

® Typical multi-mode systems [references in paper]
® Fixed platform

® Involves selection of processing elements, and mapping and
scheduling

® Application graphs merging
® Merging multiple uses-cases of applications [ACM TODAES’08]
® Merging based upon subsequence/substring matching [JRC'12]

® Our Contribution
® Multi-mode pipelined MPSoCs
® Use of maximum clique approach to find optimal merging
® Three heuristics to tradeoff accuracy with running time




Design Flows
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Heuristic MaxS (Max. Stages)

® Works on application graphs’ topologies

® Combines nodes on a stage by stage basis

Application 2 Merged Graph




Heuristic MaxS (Max. Stages)

® Works on application graphs’ topologies

® Combines nodes on a stage by stage basis

The higher of the two
capacities is used

@ 1.1:2.1,
1.1:2.1
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Heuristic MaxS (Max. Stages)

® Works on application graphs’ topologies

® Combines nodes on a stage by stage basis
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Heuristic MaxN (Max. Nodes)

® Nodes in the merged graph should not exceed the application
with maximum number of nodes

® Combines nodes in a breadth-first manner

® Exhausts all permutations of merging graphs
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Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph
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Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph

® Constructs merged graph
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® Finds optimal merging
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Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph

Maximum
Clique

. Each node has a weight which
iIndicates area saving for that
particular merging

. Area saving is calculated using
the cost functions provided by
the designer

Partial Compatibility Graph




Heuristic MaxC (Max. Weight Clique)

® Finds optimal merging
® Creates a compatibility graph
® Finds maximum clique of compatibility graph
® Constructs merged graph
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Experimental Setup

® Benchmarks

Application # Nodes
JPEG Enc 7
JPEG Dec )

MP3 Enc )
FFT 12
BF 12
TDE 13

Synl 14
Syn2 14
Syn3 17

® Pipelined MPSoCs
® Used LX3 processors with queue interface from Tensilica

® Cliquer tool to find maximum weight clique




Results (Nodes)

Merge # Nodes
No Merge MaxS MaxN MaxC
JPEGenc/dec 12 9 7 7
JPEGenc/MP3enc 12 8 7 7
JPEGdec/MP3enc 10 6 5 5
JPEGenc/dec/MP3enc 17 9 7 7
FFT/BF 24 14 12 12
FFT/TDE 26 18 13 13
BF/TDE 26 17 13 13
FFT/BF/TDE 38 19 13 13
Synl/Syn2 28 18 14 14
Syn/Syn3 31 21 17 -
Syn2/Syn3 31 26 17 -




Results (Edges)

Merge # Edges
No Merge MaxS MaxN MaxC
JPEGenc/dec 14 12 | 12 [ &8 ]
JPEGenc/MP3enc 13 10 11 8
JPEGdec/MP3enc 11 7 8 6
JPEGenc/dec/MP3enc 19 12 13 8
FFT/BF 24 16 14 13
FFT/TDE 25 18 22 14
BF/TDE 25 17 20 14
FFT/BF/TDE 37 21 23 15
Synl/Syn2 30 24 29 20
Syn/Syn3 35 25 32 -
Syn2/Syn3 35 23 31 -




Results (Running Time)

Merge Time
No Merge MaxS MaxN MaxC
JPEGenc/dec - <ls <ls 1m
JPEGenc/MP3enc - <ls <ls 1m
JPEGdec/MP3enc - <ls <ls 1m
JPEGenc/dec/MP3enc 1s 2S 3m
FFT/BF 1s 1s om
FFT/TDE 1s 1s 5m
BF/TDE 1s 1s om
FFT/BF/TDE 1s 2S
Synl/Syn2 1s 1s
Syn/Syn3 1s 1s
Syn2/Syn3 1s 1s




Results (Area Saving)

® Merging cost functions

® Two nodes saves a processor
® Two edges saves two FIFO ports + size of smaller FIFO
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Conclusions

® Multi-mode pipelined MPS0Cs can be designed by merging of
application graphs

® The proposed heuristics saved up to

® 62% processor area
® 57% FIFO area
® 44 processor/FIFO ports

® Miniscule degradation in performance and energy efficiency

® Future work
® Consider memories
® Consider code size
® Consider simultaneously executing accelerators




Thank You!



Heuristic MaxC (Max. Weight Clique)
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® Multimedia platforms are increasingly becoming heterogeneous:
® Single-/Multi-processor host system
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Pipelined MPSoCs

® Pipelined MPSoCs
® Task- and pipeline-level parallelisms (data-flow structure)

® Data- and instruction-level parallelisms (SIMD and VLIW
Instructions)
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