Network Simplex Method Based Multiple Voltage Scheduling in Power-Efficient High-Level Synthesis

Cong Hao, Song Chen, Takeshi Yoshimura

Graduate School of IPS, Waseda University, Japan

01/23/2013

- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

Proposal for Power and Resource Optimization

- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver

Experimental Results & Conclusion

Introduction & Previous Work

Formulation for Multiple Voltage Scheduling

- ILP formulation for Power Optimization
- Linear Programming Relaxation

Proposal for Power and Resource Optimization

- Obility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

Introduction – MVS

- Low-power scheduling
 - Reducing supply voltage is always efficient
 - Multiple Voltage Scheduling (MVS) is promising
- In MVS, resources with different supply voltages are available
 - Higher supply voltage: larger power, shorter delay
 - Lower supply voltage: smaller power, longer delay
- MVS: to find <u>voltage assignment</u> and <u>scheduling</u> for operations

Previous Works

- Scheduling Techniques for Variable Voltage Low Power Designs (Y. R. Lin, C. T. Hwang, A. C.-H.Wu, DAES 1997)
 - ILP formulation for latency and resource constrained MVS
 - An iterative improvement heuristic was proposed
- Modified force-directed scheduling for peak and average power optimization using multiple supply-voltages (A. Allam, ICICDT 2006)
 - Formulation for latency-constrained MVS
 - Two phase to independently for power and resource
- Scheduling with Integer Time Budgeting for Low-Power Optimization (W.jiang, ASPDAC 2008)
 - **LP formulation** for latency-constrained MVS
 - A time-budgeting-based heuristic to for power and resource

Introduction & Previous Work

Formulation for Multiple Voltage Scheduling

- ILP formulation for Power Optimization
- Linear Programming Relaxation

Proposal for Power and Resource Optimization

- Obility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

Problem Definition of MVS

- Input of Latency-constraint MVS
 - A Data Flow Graph (DFG)
 - Latency Constraint T_{con} (Max. allowable control step)
 - Possible delays for each operation
 - Adder: {1, 2, 3}; Multiplier: {2, 3, 4}

Goal

- Find (1) a delay(voltage) assignment and
 (2) an operation scheduling
- which minimize power consumption and resource
 usage simultaneously as

$$\sum_{v \in V} Power(v) + \alpha \sum Cost(Res)$$

Approaches to MVS Problem

Two sub-problems of Multiple Voltage Scheduling

Delay Assignment + Operation Scheduling
 (Power Minimization) (Resource Minimization)

<u>Simultaneous</u> Optimization

Desirable yet time-consuming and complicated

Simultaneous "Delay Assignment" and "Scheduling"

Independent Optimization

Solve delay assignment followed by scheduling

1) Delay Assignment **(Delay Assignment)** 2) Scheduling

Approaches to MVS Problem

Two sub-problems of <u>Multiple Voltage Scheduling</u>

Delay Assignment + Operation Scheduling
 (Power Minimization) (Resource Minimization)

<u>Simultaneous</u> Optimization

Desirable yet time-consuming and complicated

Simultaneous "Delay Assignment" and "Scheduling"

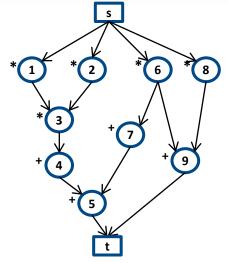
Independent Optimization

Solve delay assignment followed by scheduling

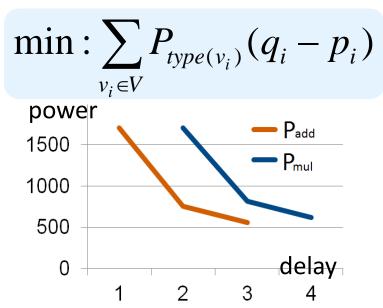
Introduction & Previous Work

- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

Proposal for Power and Resource Optimization


- Obility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

Power Optimization (ILP Formulation)


- Given: DFG G=(V,E)
- Variable: for each v_i
 - ϕ p_i is the starting control step of v_i
 - ϕ q_i is the ending control step of v_i

Constraints:

- $\stackrel{\Phi}{=} \frac{\text{Data dependency}}{q_i p_j \le 0, \forall e = (v_i, v_j) \in E }$

Objective Function

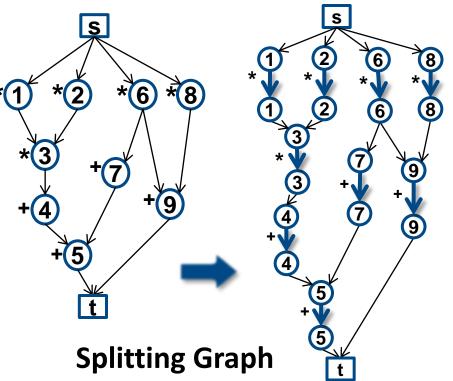
Introduction & Previous Work

Formulation for Multiple Voltage Scheduling

ILP formulation for Power Optimization

Linear Programming Relaxation

Proposal for Power and Resource Optimization


- Obility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

Linear Programming Relaxation

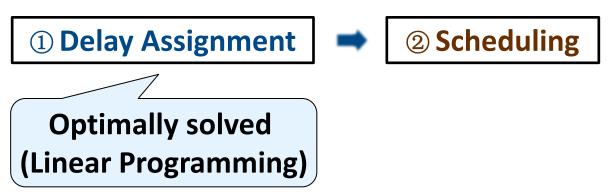
- The constraint matrix of ILP formulation is
 - The incidence matrix of a "splitting graph"
 - Totally Unimodular
 - ILP can be relaxed to Linear Programming

 $\frac{\text{Data dependency}}{q_i - p_j \le 0, \forall (v_i, v_j) \in E} \\
\underbrace{\text{Operation Delay}}_{d_{\min} \le q_i - p_i \le d_{\max}, \forall v_i \in V} \\
\underbrace{\text{Latency}}_{0 \le t - s \le T_{con}}$

Totally Unimoludar Matrix

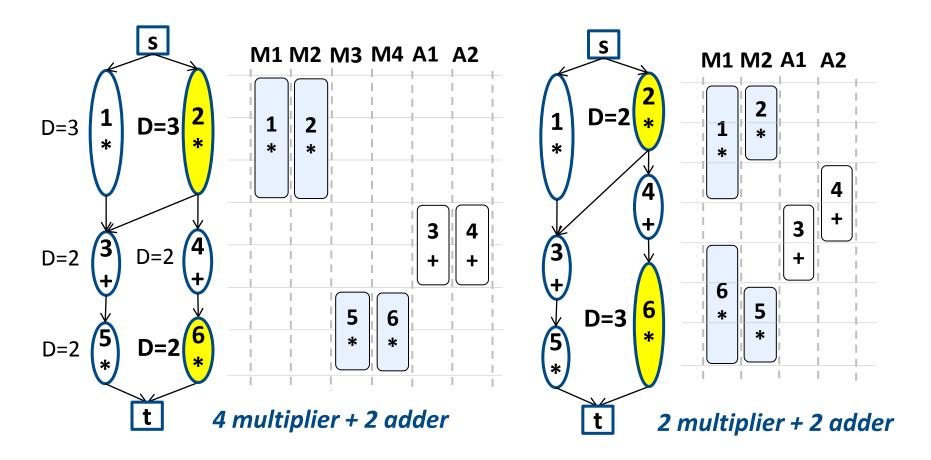
Independent Optimization

Solve delay assignment followed by scheduling



Independent Optimization

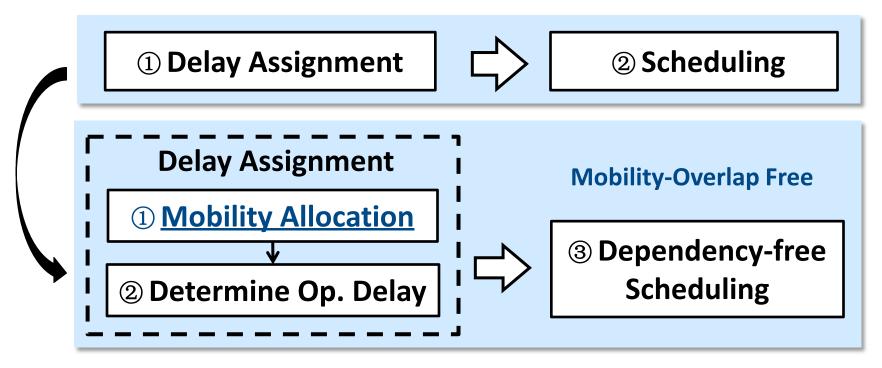
Solve delay assignment followed by scheduling


(1) Delay Assignment ② Scheduling **Optimally solved** (Linear Programming)

- Independent Optimization
 - Solve delay assignment followed by scheduling

- Delay Assignment can be solved optimally
- However, Independently optimizing power and resource may result in sub-optimal solutions

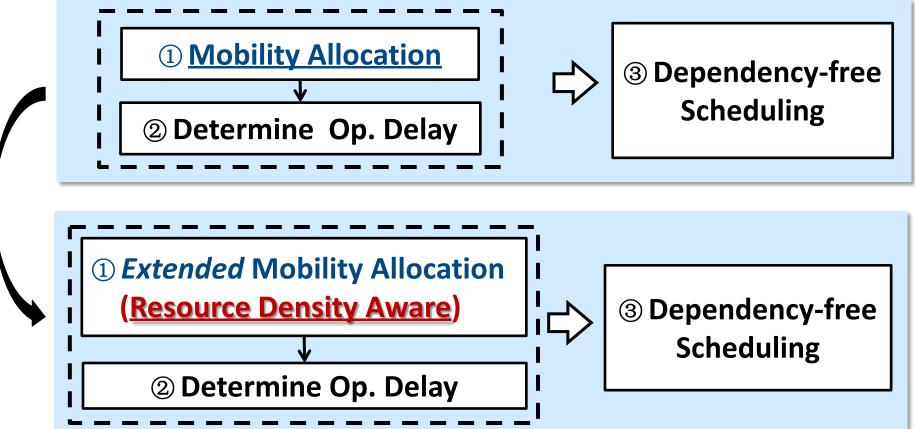
Power are both optimized but resource...


- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

Proposal for Power and Resource Optimization

- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

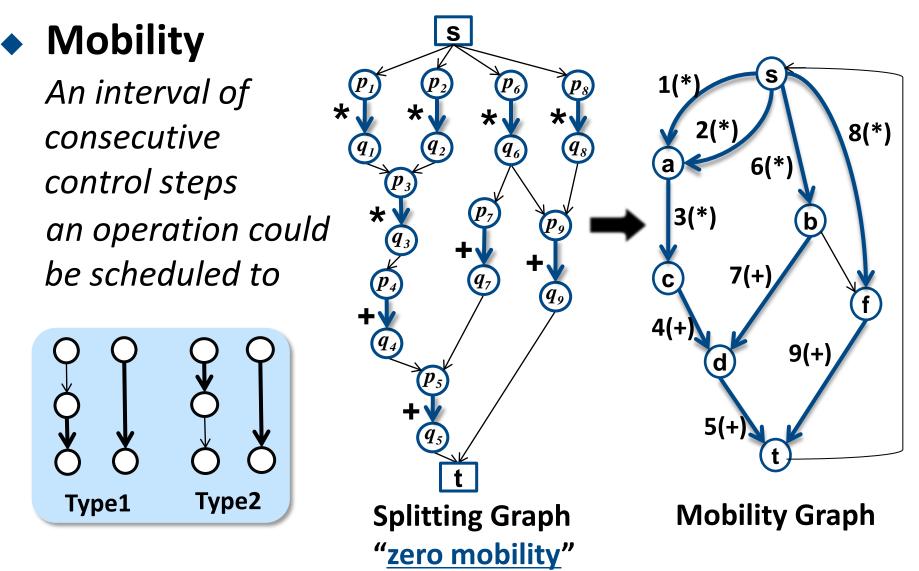
Semi-Simultaneous Proposal


- Apply resource-aware power optimization
 - First introduce **mobility** for operations
 - Transfer delay assignment to mobility allocation

Resource Minimization

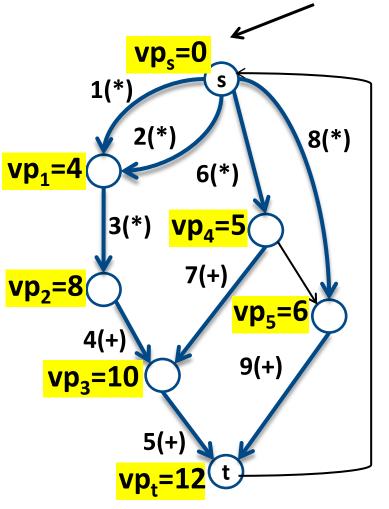
Resource-Aware Power Optimization

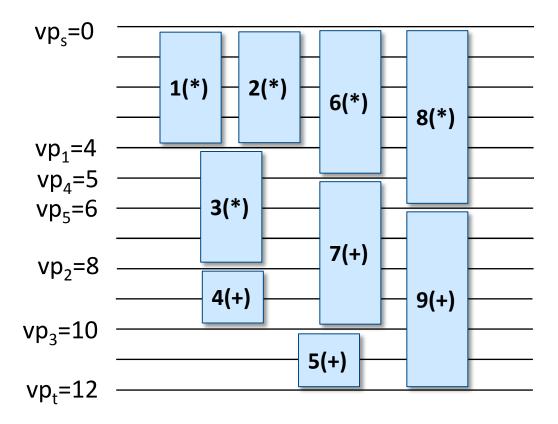
Further extend mobility allocation problem


Stage 1: Extended Power Minimization Stage 2: Resource Minimization

- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

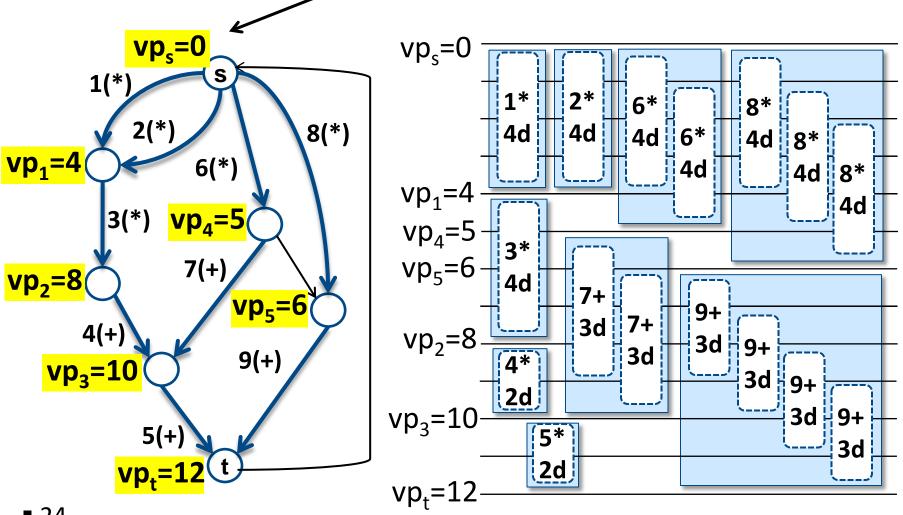
Proposal for Power and Resource Optimization


- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion


Mobility & Mobility Graph

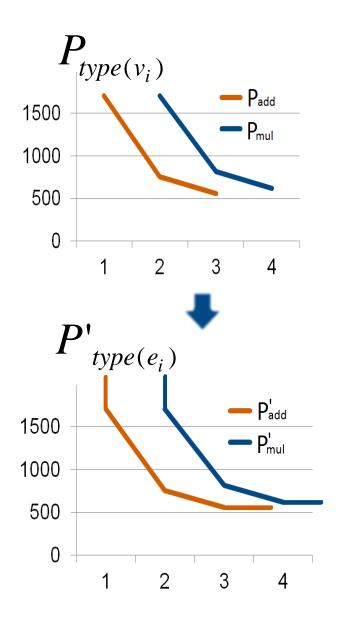
Mobility Allocation by Vertex Potential

Each vertex is associated with a "vertex potential" -- vp_i



Mobility-overlap-free: Dependency-free

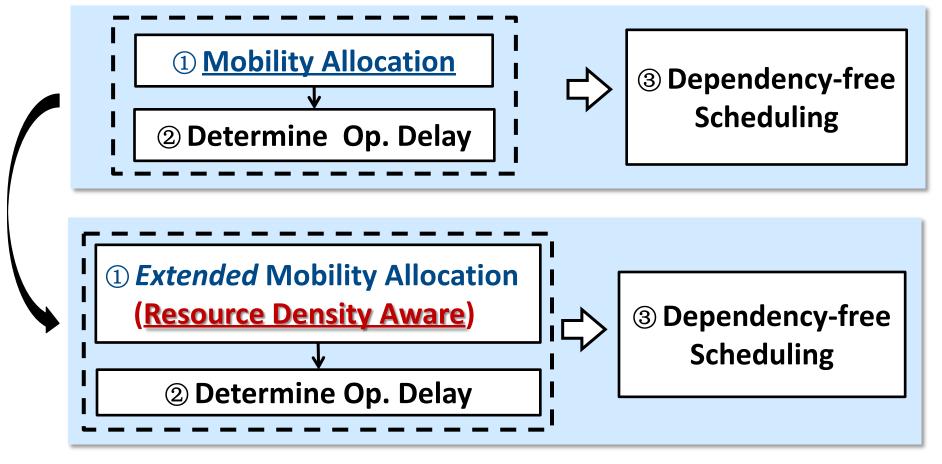
Mobility Allocation by Vertex Potential


Each vertex is associated with a "vertex potential" -- vp_i

24

Mobility Allocation Problem

 Variables Vertex Potential (VP) of vertices Constraints \oplus Mobility Graph $G_m = (V_m, E_m)$ Objective Function $\min: \sum P_{type(v_i)}(q_i - p_i)$ $v_i \in V$ min: $\sum P'_{type(e)} (vp_j - vp_i)$ $e=(v_i,v_i)$

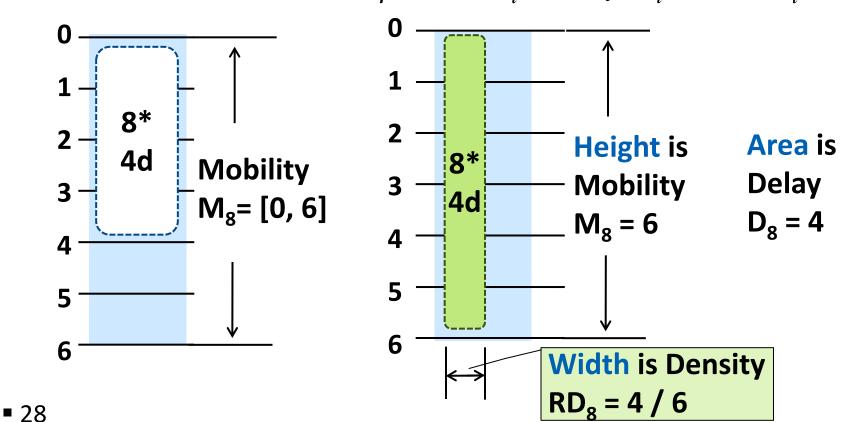

- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

Proposal for Power and Resource Optimization

- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

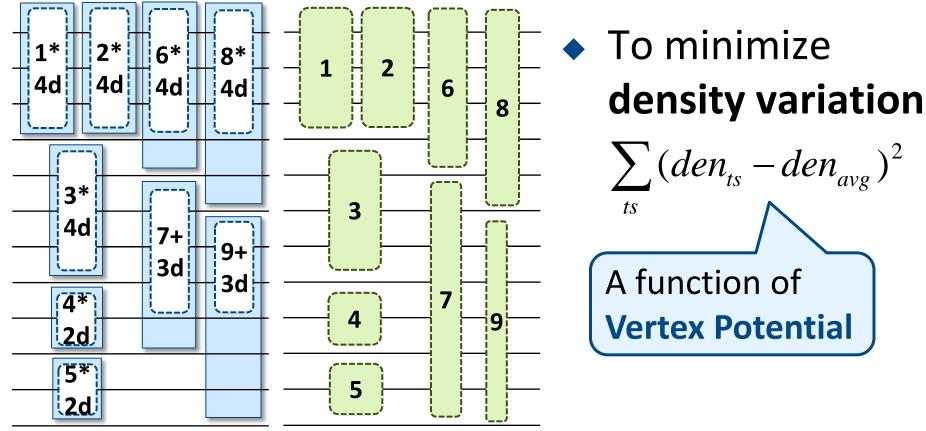
(Recall)Resource-Aware Power Optimization

Further extend mobility allocation problem

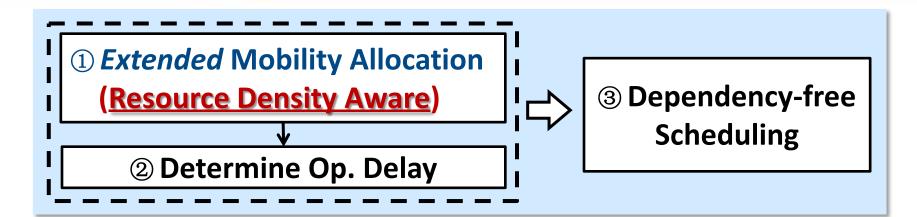


Extended Power Minimization

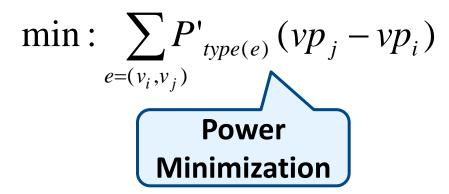
Resource Minimization

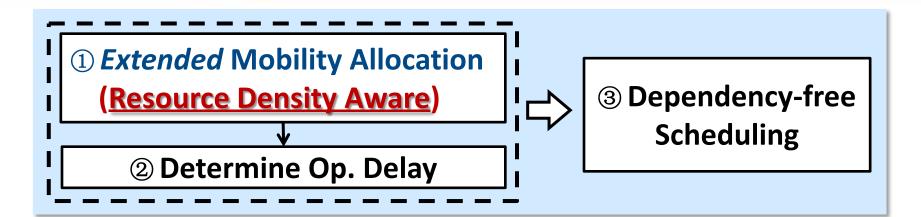

Resource Density

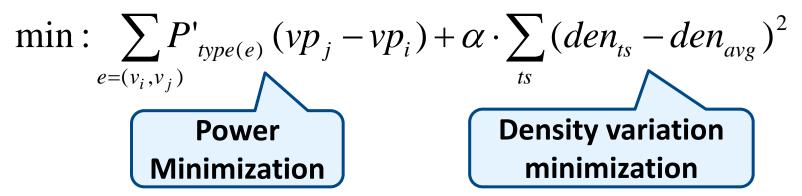
- Resource density of each operation is computed from mobility allocation result
- For an operation v_i , $RD(v_i) = dly(v_i) / |M(v_i)|$

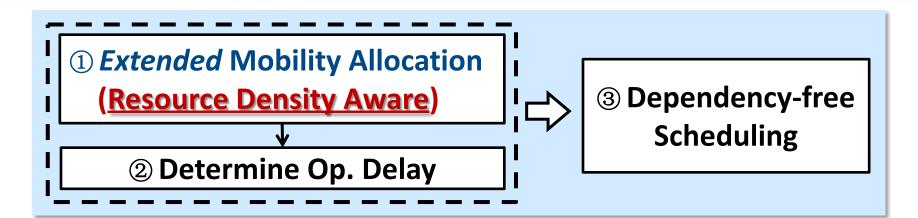


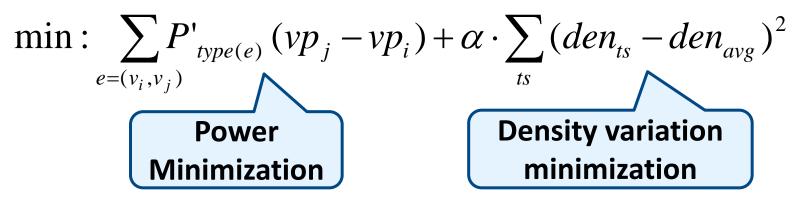
Balancing Resource Density


 Resource density of each time slot is expected to <u>distribute normally</u> (Force Directed)


Extended Power Optimization


Extended Objective Function


Extended Power Optimization


Extended Objective Function

Extended Power Optimization

Extended Objective Function

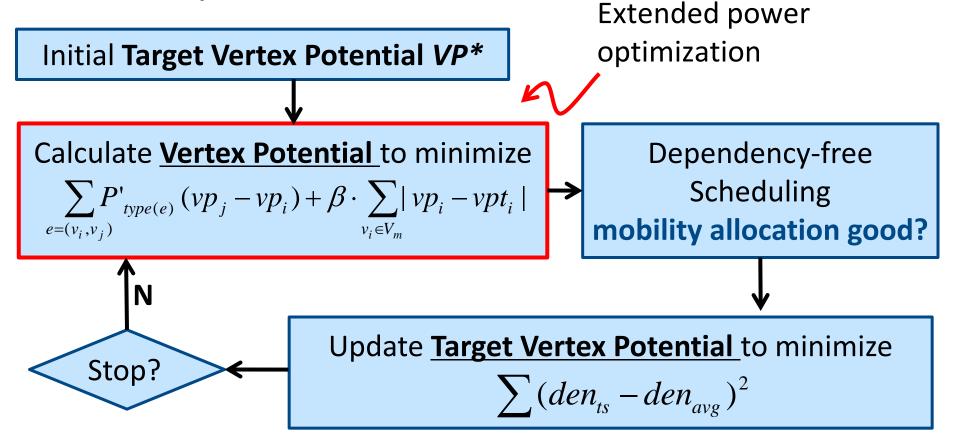
Both terms are Function of Vertex Potential

- To minimize $\sum (den_{ts} den_{avg})^2$
 - A solution vpt_i is expected to be obtained
 - We call it <u>target vertex potential</u> (VP*)
- Objective function is further changed as

$$\min : \sum_{e=(v_i,v_j)} P'_{type(e)} (vp_j - vp_i) + \alpha \cdot \sum_{ts} (den_{ts} - den_{avg})^2$$

$$\min : \sum_{e=(v_i,v_j)} P'_{type(e)} (vp_j - vp_i) + \beta \cdot \sum_{v_i \in V_m} |vp_i - vpt_i|$$

- To minimize $\sum (den_{ts} den_{avg})^2$
 - A solution *vpt_i* is expected to be obtained
 - We call it <u>target vertex potential</u> (VP*)
- Objective function is further changed as

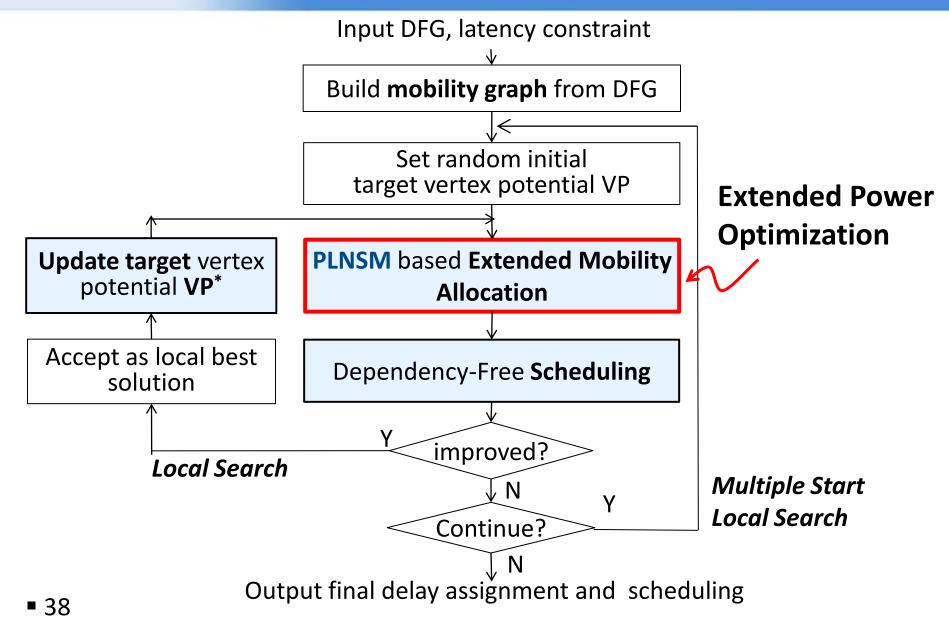

$$\min : \sum_{e=(v_i,v_j)} P'_{type(e)} (vp_j - vp_i) + \alpha \cdot \sum_{ts} (den_{ts} - den_{avg})^2$$
$$\min : \sum_{e=(v_i,v_j)} P'_{type(e)} (vp_j - vp_i) + \beta \cdot \sum_{v_i \in V_m} |vp_i - vpt_i|$$
$$Obtained from minimizing \sum (den_{ts} - den_{avg})^2$$

- To minimize $\sum (den_{ts} den_{avg})^2$
 - A solution *vpt_i* is expected to be obtained
 - We call it <u>target vertex potential</u> (VP*)
- Objective function is further changed as

$$\min : \sum_{e=(v_i,v_j)} P'_{type(e)} (vp_j - vp_i) + \alpha \cdot \sum_{ts} (den_{ts} - den_{avg})^2$$
$$\blacksquare$$
$$\min : \sum_{e=(v_i,v_j)} P'_{type(e)} (vp_j - vp_i) + \beta \cdot \sum_{v_i \in V_m} |vp_i - vpt_i|$$

The new objective function is piecewise
 linear programming

 An iterative proposal to struggle for a good vertex potential solution


Outline

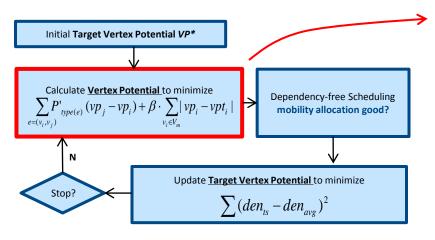
- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

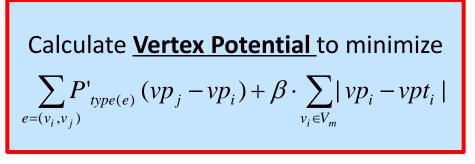
Proposal for Power and Resource Optimization

- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver
- Experimental Results & Conclusion

Flow-Chart of Proposed NPMVS

Outline

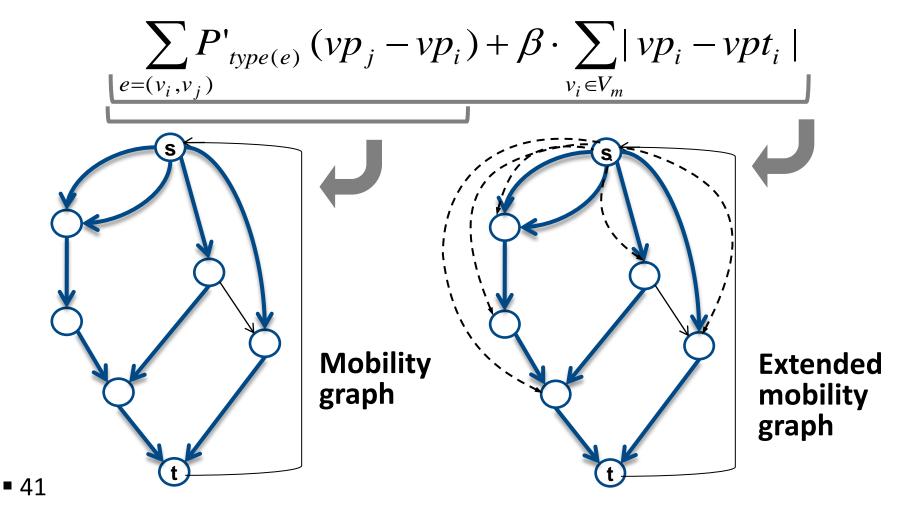

- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation


Proposal for Power and Resource Optimization

- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- ♦ Specific PLNSM Solver
- Experimental Results & Conclusion

Specific Solver for Power Optimization

- Extended Power Optimization is crucial and performed repeatedly
 - High-efficiency is expected
 - A specific solver <u>PLNSM</u> is proposed
 - <u>P</u>iecewise-<u>L</u>inear extended <u>N</u>etwork <u>S</u>implex <u>M</u>ethod

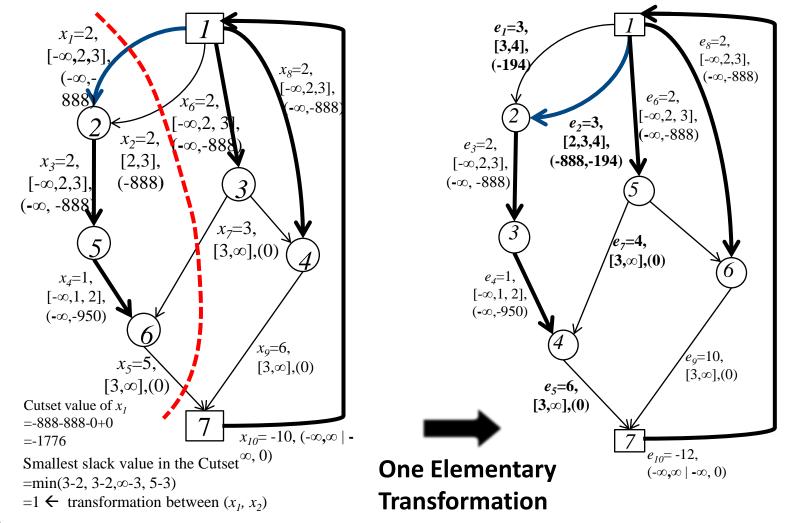


Extended Power Optimization
Solved by the PLNSM repeatedly

Objective Function with Target Potential

Formulation for extended power optimization is still **Totally Unimodular** & can be relaxed to **Linear Programming**!

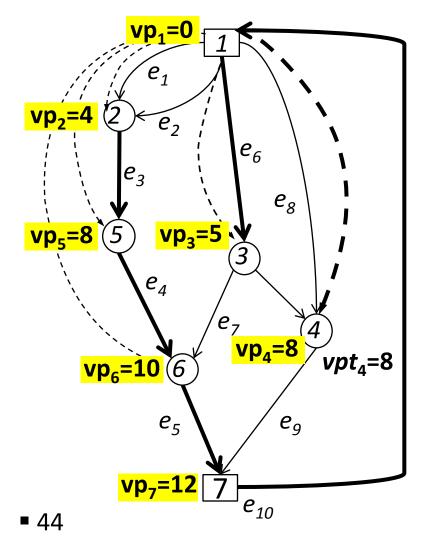
The PLNSM Solver

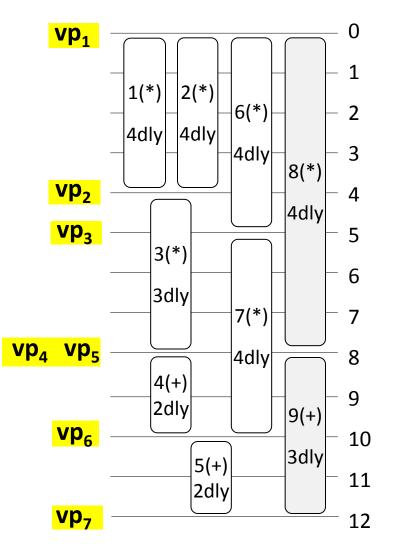

- Linear Programming formulation
 - Allow us to adopt Network Simplex Method

<u>Network Simplex Method (NSM)</u>

- Works more efficient than Simplex Method under network graphs (Our formulation)
- High-efficiency when performed repeatedly
- When dealing with piecewise-linear functions
 - Simplex Method introduces several times additional variables
 - NSM can easily be extended to PLNSM without any additional variables or constraints

Network Simplex Method (NSM)


Basic idea – perform tree transformation



43

Network Simplex Method (NSM)

Final tree & mobility allocation result

Outline

- Introduction & Previous Work
- Formulation for Multiple Voltage Scheduling
 - ILP formulation for Power Optimization
 - Linear Programming Relaxation

Proposal for Power and Resource Optimization

- Mobility Allocation
- Extended Power Optimization
- Proposed Multiple Voltage Scheduling Algorithm
- Specific PLNSM Solver

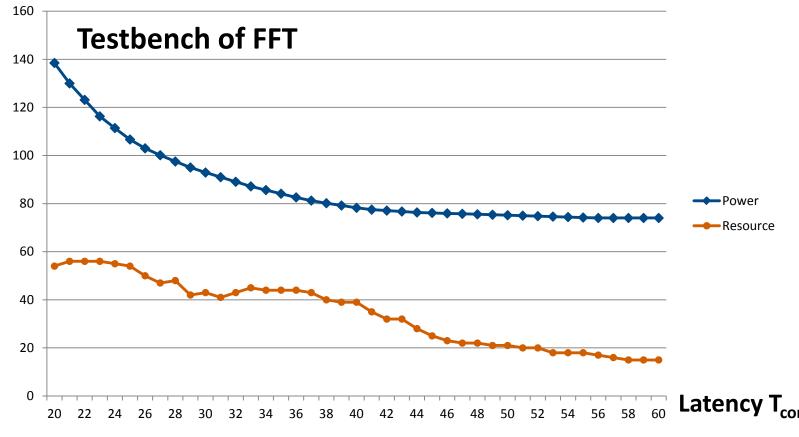
Experimental Results & Conclusion

Efficiency of PLNSM Solver

- Environment: Linux, AMD Opteron 2.6GHz & 4GBMem
- DFG shows the graph size (|V|,|E|) of DFG
 G_m shows the graph size (|V|,|E|) of mobility graph
- PLNSM (Network Simplex Method with Piecewise-Linear extension) achieves 80X+ speedup than *lp_solver**

	DFG	G_m	LP(ms)	PLNSM(ms)	cmp(X)
AD2	47,110	46,61	12.330	0.128	96.3
AE	54,143	49,69	17.550	0.160	109.7
AR	29,42	18,29	3.550	0.044	80.7
DIFF	9,16	7,9	0.787	0.012	65.6
ELLIP	35,67	30,35	7.020	0.070	100.3
MPEG	54,114	41,60	16.400	0.180	91.1
FFT	134,234	122,201	37.877	1.768	21.4
AVR					80.7

■ 46 *lp_solver: a general LP solving package from <u>http://lpsolve.sourceforge.net/5.5/</u>*


Optimality of Proposed NPMVS

- Longest running time of NPMVS is 0.25sec(FFT under T_{con}=2T)
- Average running time of NPMVS is less than 0.1sec, which is thousands times faster than ILP
- NPMVS get optimum solutions for all the test benches

		NPMVS								ILP								Cmp	
DFG	T_{con}	power(μw)	resource	4d*	3d*	2d*	3d+	2d+	1d+	$power(\mu w)$	resource	4d*	3d*	2d*	3d+	2d+	1d+	power	resource
ad	Т	66223	21	1	2	3	0	1	2	66223	21	1	2	3	0	1	2	1.0	1.0
	1.5T	36771	20	2	3	1	2	0	0	36771	20	2	3	1	2	0	0	1.0	1.0
	2T	29069	15	3	1	0	2	1	0	29069	15	3	1	0	2	1	0	1.0	1.0
ae	Т	72682	19	2	1	2	1	1	2	72682	19	2	1	2	1	1	2	1.0	1.0
	1.5T	41020	15	1	2	1	1	2	0	NA	NA	-	-	-	-	-	-	-	-
	2T	33040	15	3	1	0	2	1	0	NA	NA	-	-	-	-	-	-	-	-
ar	Т	41056	27	4	0	4	1	0	2	41056	27	4	0	4	1	0	2	1.0	1.0
	1.5T	26600	23	2	4	0	1	2	2	26600	23	2	4	0	1	2	2	1.0	1.0
	2T	18572	15	4	0	0	1	2	0	18572	15	4	0	0	1	2	0	1.0	1.0
diff	Т	10955	10	0	2	1	0	0	1	10955	10	0	2	1	0	0	1	1.0	1.0
	1.5T	7523	10	2	0	1	0	1	0	7523	10	2	0	1	0	1	0	1.0	1.0
	2T	5359	7	2	0	0	0	1	0	5359	7	2	0	0	0	1	0	1.0	1.0
ellip	Т	49872	19	1	1	3	0	2	2	49872	19	1	1	3	0	2	2	1.0	1.0
	1.5T	27220	18	2	2	1	1	2	0	27220	18	2	2	1	1	2	0	1.0	1.0
	2T	21190	17	4	1	0	2	0	0	21190	17	4	1	0	2	0	0	1.0	1.0
mpeg	Т	77423	10	1	0	1	1	1	2	77423	10	1	0	1	1	1	2	1.0	1.0
	1.5T	52147	10	1	0	1	1	2	1	NA	NA	-	-	-	-	-	-	-	-
	2T	36931	10	1	1	0	2	2	0	NA	NA	-	-	-	-	-	-	-	-
fft	Т	144615	50	4	6	2	0	4	10	NA	NA	-	-	-	-	-	-	-	-
	1.5T	102503	46	6	4	1	0	12	1	NA	NA	-	-	-	-	-	-	-	-
	2T	93413	20	4	0	0	8	0	0	NA	NA	-	-	-	-	-	-	_	-
AVR																		1.0	1.0
4/																	-		

Latency vs Power & Resource

- Power, Resource are evaluated for data "FFT"
 - ♦ changing the latency constraint T_{con}
- Power decreases constantly, but resource doesn't

Conclusion

Network Simplex Method

 By analyzing the constraint matrix of MVS problem,
 "Piecewise-Linear extended Network Simplex Method (PLNSM)" is proposed on a mobility graph

Two Stage Heuristic method

MVS problem is partitioned into "<u>Extended Power</u>
 <u>Minimization</u>" and "<u>Dependency-free Scheduling</u>"
 problems by introducing a variable "Vertex Potential"

Thank you!