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Instruction-set architecture (ISA) synthesis

 Embedded processors are widely used in 
various applications
 ISA synthesis: application-specific extension
 Efficient speedup with less cost (area, power, etc.)

 Custom instruction (CI) selection
 Critical computation: CIs  Custom accelerator (CA)
 The others: basic instructions (BIs)  ALU
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 A lot of challenging issues of CMOS scaling
 Cannot expect the frequency scaling 

 Process variation
 Propagation delay varies by environments
 Conventionally, deterministic 

worst-case approach
 Include extremely rare cases 

– pessimistic!
 Stochastic approach 
 E.g., Statistical Static Timing 

Analysis (SSTA)

Clock frequency
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Previous works (1)

 SSTA-based ISA synthesis works 
 [Kamal'11]: CI selection with minimum timing 

yield degradation
 Timing yield: possibility to complete operations for a 

given target clock 
 Timing yield degradation: may be intolerable for some 

applications
 [Kamal'12]: Maximum speedup with no timing 

yield degradation 
 An extra cycle to CIs with less-than-1.0 timing yield     
 Static approach only: extra cycles even when no 

timing faults occur – pessimistic!
 Timing violation by BIs are not considered
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Previous works (2)

 Variation-tolerable works in other fields
 Architectures: Razor [Ernst'03], etc. 
Detect and correct timing faults dynamically

 High-level synthesis: SSTA-based works 
([Cong'09], etc.)
 Use Razor-flipflops for aggressive clocking 

without timing yield degradation

 HW approach only - very costly!
 Comprehensive approach from both HW/SW

viewpoints is necessary
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VISA synthesis

 VISA: Variation-aware ISA synthesis
 Performance improvement by making effective 

use of process variation on both HW and SW
HW: Dynamic fault detection & correction with 

minimum performance degradation for aggressive 
clocking (based on Razor)

 SW: SSTA-based CI selection effectively by 
exploiting application features

 Handle timing violation of both BIs & CIs
 Applicable to any processors which have at 

least a mechanism of dynamic timing fault 
detection
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Razor processor architecture (1)

 Razor flipflop: Main flipflop + shadow 
latch (delayed clock)
 Fault detection: compares the results
 Fault correction: simply copies the correct 

result to the main flipflop during 1-cycle stall
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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Razor processor architecture (2)
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The shadow latch 
detects the timing 
fault and issues 
the Error signal
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Razor processor architecture (2)

stall stall stall NEW stall

The correct 
result of MULT 
is provided to 
the MEM stage
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Razor processor architecture (2)
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...         ADDI       AND        OR          NEW

OR has no 
dependency
from & share 
no arithmetic 
unit with NEW

NEW can be 
executed 
with no stall

Actually 
this stall is 

not
necessary!

0
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Razor processor architecture (2)
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…
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Our architecture model
 Removable stalls:

If instructions in the EX and ID stages have
1. No temporal dependency (data dependency)
 Judge from forwarding signals

2. No physical dependency (resource sharing in EX)
 Judge from control signals to ALU/custom accelerators
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Not restricted 
to RazorI!

Extension is only for the EX-MEM register



CI selection

 SSTA + application features 
 Speedup effects of individual instances of CIs 
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…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1: 
8 iterations

NEW2: 
20 iterations

Need a stall

 Obtain the speedup of 
CIs considering
 Penalty for register file 

accesses
Neighboring instructions

of its instances 
(=application features)

CI (NEW)
2 instances

Speedup = 10 cycles/exec.
Timing yield = 0.9



CI selection

 SSTA + application features 
 Speedup effects of individual instances of CIs 
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CI (NEW)
2 instances

Speedup = 10 cycles/exec.
Timing yield = 0.9

…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1: 
8 iterations

NEW2: 
20 iterations

Benefit by NEW
= average speedup by NEW1

+ average speedup by NEW2

= {0.9x10 + 0.1x(10-0)}x8
+ {0.9x10 + 0.1x(10-1)}x20
=80 + 198
=278

Need a stall

Penalty (stall)



CI selection: constraint

 Only CIs which always finish by the setup 
time of the shadow latch are selectable
 Const.: yi(ciT+d) = 1.0
 yi(t): timing yield of instruction i at time t
 ci: minimum latency of instruction i in the EX stage
 T: target clock period
 d: delayed setup time of the shadow latch

 All BIs must hold the Const.
 CIs are pruned by the Const.
 CIs are also pruned by an area constraint
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Experimental setup
 Benchmarks: adpcm, aes, chenidct, gsm, and sha, 

and wavelet
 Target device: 90nm technology

1. T0 : yi(ciT0) = 1.0 for all BIs and CIs
2. T1 : yi(ciT1) = 1.0 for all BIs
3. T2 : yi(ciT2) < 1.0 & yi(ciT2+d) = 1.0 for some BIs

 Simulator: SimpleScalar
 MIPS (PISA)

 Comparative methods
1. A deterministic worst-case method (DW): only for T0
2. An existing SSTA-based method (ES) [Kamal'12]: 

an extra cycle (stall) is always given to CIs with less-
than-1.0 timing yield – only for T1

3. Our proposed method (VISA): compensation by both 
HW and SW – for T1 and T2

All performed greedily
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Experimental results: speedup

 DM
 Not very large speedup
 Similarly with DM, deterministic approaches 

quickly face the clock wall
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adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement



Experimental results: speedup

 ES
 Larger speedup than DM, but still pessimistic in that 

ES always gives a stall for CIs with less-than-1.0 
timing yield

 For sha with 3x and 6x, even less speedup than DM
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Experimental results: stalls

Method adpcm aes chenidct gsm sha wavelet
ES (T1) 2/2 2/2 18/18 7/7 1/1 3/3

VISA(T1) 0/70 0/112 6/78 4/95 0/17 1/22
VISA(T2) 497/875 618/1155 417/633 547/907 390/689 366/655
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 ES
 100% of CIs with less-than-1.0 timing yield 

always take a stall for T1
 VISA

 Up to 8% of such CIs may take a stall for T1 
 Effectively remove stalls

 Can select more effective CIs by considering 
application features

No. of instr. with a stall / No. of instr. with less-than-1.0 timing yield



Experimental results: speedup

 VISA
 More speedup than ES for T1
 Stall removal & effective CI selection

 Outperform DM and ES by up to 61.3% and 
13.0%, respectively
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Experimental results: speedup

 VISA
 More effective for more aggressive clocking
 Outperform DM and ES by up to 78.0% and 

49.4%, respectively, for T2
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Conclusion

 VISA: novel Variation-aware ISA synthesis
 Make effective use of process variation 

comprehensively from both HW and SW
HW: Dynamic fault detection & correction with 

minimum performance degradation
 SW: SSTA-based CI selection considering 

application features
 Substantially improves performance compared 

with existing methods
More effective for more aggressive clocking
 Up to 78.0% and 49.4% performance improvement 

over two existing approaches
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