
VISA SYNTHESIS: VARIATION-
AWARE INSTRUCTION SET
ARCHITECTURE SYNTHESIS

ASP-DAC : Jan. 23rd 2013

Yuko Hara-Azumi* Takuya Azumi† Nikil D. Dutt‡

*Nara Institute of Science and Technology
†Ritsumeikan University ‡University of California, Irvine

Outlines

 Background
 Previous works

 Variation-aware ISA (VISA) synthesis
 Razor architecture
 Our architecture (HW-side approach)
 SSTA-based CI selection (SW-side approach)

 Experiments
 Conclusions

2

Instruction-set architecture (ISA) synthesis

 Embedded processors are widely used in
various applications
 ISA synthesis: application-specific extension
 Efficient speedup with less cost (area, power, etc.)

 Custom instruction (CI) selection
 Critical computation: CIs Custom accelerator (CA)
 The others: basic instructions (BIs) ALU

3

IF ID

M
EM

W
B

EX
E

A
LU

C
A CA CA

Customizable processor

Basic processor
Custom accelerator

 A lot of challenging issues of CMOS scaling
 Cannot expect the frequency scaling

 Process variation
 Propagation delay varies by environments
 Conventionally, deterministic

worst-case approach
 Include extremely rare cases

– pessimistic!
 Stochastic approach
 E.g., Statistical Static Timing

Analysis (SSTA)

Clock frequency
4

Worst-case
delay has little
improvement

CMOS scaling

delay

 A lot of challenging issues of CMOS scaling
 Cannot expect the frequency scaling

 Process variation
 Propagation delay varies by environments
 Conventionally, deterministic

worst-case approach
 Include extremely rare cases

– pessimistic!
 Stochastic approach
 E.g., Statistical Static Timing

Analysis (SSTA)

Clock frequency
5

Worst-case
delay has little
improvement

CMOS scaling

95% satisfy the timing
Aggressive clocking delay

Previous works (1)

 SSTA-based ISA synthesis works
 [Kamal'11]: CI selection with minimum timing

yield degradation
 Timing yield: possibility to complete operations for a

given target clock
 Timing yield degradation: may be intolerable for some

applications
 [Kamal'12]: Maximum speedup with no timing

yield degradation
 An extra cycle to CIs with less-than-1.0 timing yield
 Static approach only: extra cycles even when no

timing faults occur – pessimistic!
 Timing violation by BIs are not considered

6

Previous works (2)

 Variation-tolerable works in other fields
 Architectures: Razor [Ernst'03], etc.
Detect and correct timing faults dynamically

 High-level synthesis: SSTA-based works
([Cong'09], etc.)
 Use Razor-flipflops for aggressive clocking

without timing yield degradation

 HW approach only - very costly!
 Comprehensive approach from both HW/SW

viewpoints is necessary

7

Outlines

 Background
 Previous works

 Variation-aware ISA (VISA) synthesis
 Razor architecture
 Our architecture (HW-side approach)
 SSTA-based CI selection (SW-side approach)

 Experiments
 Conclusions

8

VISA synthesis

 VISA: Variation-aware ISA synthesis
 Performance improvement by making effective

use of process variation on both HW and SW
HW: Dynamic fault detection & correction with

minimum performance degradation for aggressive
clocking (based on Razor)

 SW: SSTA-based CI selection effectively by
exploiting application features

 Handle timing violation of both BIs & CIs
 Applicable to any processors which have at

least a mechanism of dynamic timing fault
detection

9

Razor processor architecture (1)

 Razor flipflop: Main flipflop + shadow
latch (delayed clock)
 Fault detection: compares the results
 Fault correction: simply copies the correct

result to the main flipflop during 1-cycle stall

10

11

Razor processor architecture (2)

ADDI

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

11

Razor processor architecture (2)

SUBI ADDI

12

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

12

Razor processor architecture (2)

NEW SUBI ADDI

13

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

13

Razor processor architecture (2)

OR NEW SUBI ADDI ...

14

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

14

Razor processor architecture (2)

AND OR NEW SUBI ADDI

15

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

15

Timing fault!

Razor processor architecture (2)

ADDI AND OR NEW SUBI

The shadow latch
detects the timing
fault and issues
the Error signal

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

16

stall!

Razor processor architecture (2)

stall stall stall NEW stall

The correct
result of MULT
is provided to
the MEM stage

17

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

17

Razor processor architecture (2)

... ADDI AND OR NEW

18

0

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

18

…
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

Razor processor architecture (2)

... ADDI AND OR NEW

OR has no
dependency
from & share
no arithmetic
unit with NEW

NEW can be
executed
with no stall

Actually
this stall is

not
necessary!

0

19

Razor processor architecture (2)

... ADDI AND NEW/OR …
ADDI R1 R1 7
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
AND R5 R5 R6
ADDI R4 R4 3
…

0

20

Our architecture model
 Removable stalls:

If instructions in the EX and ID stages have
1. No temporal dependency (data dependency)
 Judge from forwarding signals

2. No physical dependency (resource sharing in EX)
 Judge from control signals to ALU/custom accelerators

21

Not restricted
to RazorI!

Extension is only for the EX-MEM register

CI selection

 SSTA + application features
 Speedup effects of individual instances of CIs

22

…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1:
8 iterations

NEW2:
20 iterations

Need a stall

 Obtain the speedup of
CIs considering
 Penalty for register file

accesses
Neighboring instructions

of its instances
(=application features)

CI (NEW)
2 instances

Speedup = 10 cycles/exec.
Timing yield = 0.9

CI selection

 SSTA + application features
 Speedup effects of individual instances of CIs

23

CI (NEW)
2 instances

Speedup = 10 cycles/exec.
Timing yield = 0.9

…
SUBI R2 R2 1
NEW R5 R1 R3
OR R1 R1 R2
…
ADDI R4 R4 8
NEW R6 R4 R2
AND R4 R4 R6
…

NEW1:
8 iterations

NEW2:
20 iterations

Benefit by NEW
= average speedup by NEW1

+ average speedup by NEW2

= {0.9x10 + 0.1x(10-0)}x8
+ {0.9x10 + 0.1x(10-1)}x20
=80 + 198
=278

Need a stall

Penalty (stall)

CI selection: constraint

 Only CIs which always finish by the setup
time of the shadow latch are selectable
 Const.: yi(ciT+d) = 1.0
 yi(t): timing yield of instruction i at time t
 ci: minimum latency of instruction i in the EX stage
 T: target clock period
 d: delayed setup time of the shadow latch

 All BIs must hold the Const.
 CIs are pruned by the Const.
 CIs are also pruned by an area constraint

24

Outlines

 Background
 Previous works

 Variation-aware ISA (VISA) synthesis
 Razor architecture
 Our architecture (HW-side approach)
 SSTA-based CI selection (SW-side approach)

 Experiments
 Conclusions

25

Experimental setup
 Benchmarks: adpcm, aes, chenidct, gsm, and sha,

and wavelet
 Target device: 90nm technology

1. T0 : yi(ciT0) = 1.0 for all BIs and CIs
2. T1 : yi(ciT1) = 1.0 for all BIs
3. T2 : yi(ciT2) < 1.0 & yi(ciT2+d) = 1.0 for some BIs

 Simulator: SimpleScalar
 MIPS (PISA)

 Comparative methods
1. A deterministic worst-case method (DW): only for T0
2. An existing SSTA-based method (ES) [Kamal'12]:

an extra cycle (stall) is always given to CIs with less-
than-1.0 timing yield – only for T1

3. Our proposed method (VISA): compensation by both
HW and SW – for T1 and T2

All performed greedily

26

Experimental results: speedup

 DM
 Not very large speedup
 Similarly with DM, deterministic approaches

quickly face the clock wall

27

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Experimental results: speedup

 ES
 Larger speedup than DM, but still pessimistic in that

ES always gives a stall for CIs with less-than-1.0
timing yield

 For sha with 3x and 6x, even less speedup than DM

28

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Experimental results: stalls

Method adpcm aes chenidct gsm sha wavelet
ES (T1) 2/2 2/2 18/18 7/7 1/1 3/3

VISA(T1) 0/70 0/112 6/78 4/95 0/17 1/22
VISA(T2) 497/875 618/1155 417/633 547/907 390/689 366/655

29

 ES
 100% of CIs with less-than-1.0 timing yield

always take a stall for T1
 VISA

 Up to 8% of such CIs may take a stall for T1
 Effectively remove stalls

 Can select more effective CIs by considering
application features

No. of instr. with a stall / No. of instr. with less-than-1.0 timing yield

Experimental results: speedup

 VISA
 More speedup than ES for T1
 Stall removal & effective CI selection

 Outperform DM and ES by up to 61.3% and
13.0%, respectively

30

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Experimental results: speedup

 VISA
 More effective for more aggressive clocking
 Outperform DM and ES by up to 78.0% and

49.4%, respectively, for T2

31

adpcm aes chenidct

gsm sha wavelet

x-axis: Area introduced for CIs (#x ALU's area)
y-axis: Execution time improvement

Conclusion

 VISA: novel Variation-aware ISA synthesis
 Make effective use of process variation

comprehensively from both HW and SW
HW: Dynamic fault detection & correction with

minimum performance degradation
 SW: SSTA-based CI selection considering

application features
 Substantially improves performance compared

with existing methods
More effective for more aggressive clocking
 Up to 78.0% and 49.4% performance improvement

over two existing approaches

32

