

L-Shape Based Layout Fracturing for E-Beam Lithography

Bei Yu, Jhih-Rong Gao, and **David Z. Pan** Dept. of Electrical & Computer Engineering University of Texas at Austin

Supported in part by NSF and NSFC

Outline

Introduction

- Problem Formulation
- Algorithms
 - > Rectangular Merging (RM) Algorithm
 - > Direct L-Shape Fracturing (DLF) Algorithm
- Experimental Results
- Conclusion

E-Beam lithography (EBL)

- Widely deployed in mask manufacturing
- > Promising candidates for sub-22nm
- Conventional EBDW: variable shaped beams (VSB)

Layout Fracturing

- Fundamental step before EBL writing
- Decompose layout pattern => non-overlapping rectangles
- Shot number dramatically increases for sub-22nm
 - More complicated OPC

E-beam Shot Count Estimates by Node (note: all shot count numbers = billions)

Node	M1 actual	M1 (2x scaling	M1 (4x)	M1 (8x)
Noue				
14		620	2480	9920
22		310	620	1240
32	155			
45	70			

Courtesy IBM

L-Shape E-beam Shot

One more aperture cf. rectangular shots
Potentially reduce shot number by up to 50%

Previous Works

Rectangular fracturing

 ILP [Kahng, SPIE'04, SPIE'06] or heuristic methods [Dillon, SPIE'08; Ma+ SPIE'11]

L-shape fracturing

- > Report w/o detail algorithms [Sahouria, SPIE'10]
- > In geometrical science, heuristic horizontal slicing
- > However, sliver minimization not considered

Problem Formulation

Input:

- > Layout (a set of polygons)
- Output:
 - Fracture the layout into a set of non-overlapping Lshapes and rectangles

Objective:

- Minimize the shot count (L shapes or rectangles)
- > Minimize the silver length of fractured shots

Outline

- Introduction
- Problem Formulation
- Algorithms
 - > Rectangular Merging (RM) Algorithm
 - > Direct L-Shape Fracturing (DLF) Algorithm
- Experimental Results
- Conclusion

Two Approaches

Rectangular Merging (RM) Algorithm

- > Re-use previous rectangular fracturing results
- Merge rectangles into L-shapes

Direct L-Shape Fracturing (DLF) Algorithm

- Direct L-Shape Generation
- > Avoid redundant operations
- Nice properties to reduce problem size/complexity

Rectangular Merging (RM)

Given input rectangles (through conventional VSB fracturing) Construct graph to represent the relationships

Edge selection through maximum matching O(nmlogn)

Direct L-Shape Fracturing

Concave vertex: with internal angle is 270°

- *Cut*: a horizontal or vertical line segment where at least one of the two endpoints is a concave vertex
- Odd-Cut: a cut that has odd number of concave vertices on one or both sides of the cut
- *Lemma 1*: A polygon with *c* concave vertices can be decomposed into L-shapes with upper bound Nup = |c/2|+1

Direct L-Shape Fracturing

- Chord: A special cut whose two endpoints are both concave
- **Odd-Chord**: a chord that is an odd-cut

Lemma 2: Dividing a polygon through a chord will not increase *Nup*

Lemma 3: Dividing a polygon with even number of concave vertices through an odd-chord can reduce *Nup* by 1

Direct L-Shape Fracturing Algorithm

Overall Flow

 Step 1: chord selection and division => independent sub-polygons

Step 2: odd-cut detection and L-shape fracturing

Odd-Chord Detection and Selection

Odd-Chord Detection

- Check whether odd-chord, from O(n) to O(1)
 - > Each vertex is associated with parity value p

Theorem 1: In a even polygon, chord *ab* is odd iff pa = pb

f(0)

G(0)

e(0)

d(0)

k(0)

j(1)

a(0)

l(0)

C(0)

b(1)

1**h**(1)

T(1)

All odd-chords can be detected in O(nlogn)

Chord Selection

- Prefer odd-chords
 - To reduce shot count Nup
- Sliver minimization
- Maximum weighted matching problem

Odd-Cut Detection

- Check whether a cut is odd, in O(1)
- Each vertex is associated (order number, parity)
- Theorem 2: In odd polygon, cut (a, bc) is an oddcut iff $\begin{cases} p_a = p_b, & if \ o_a > o_b \\ p_a \neq p_b, & if \ o_a < o_b \end{cases}$
- Odd-cut detection can be finished in O(nlogn)

Effective Odd-Cut Info Update

Only update one vertex and four edges, in O(1) time

L-Shape Fracturing through Odd-Cut

Runtime complexity O(n²logn)

Speed-up Techniques

Select multiple independent odd cuts simultaneously

Practical runtime complexity can be reduced to O(nlogn)

Experimental Results

- Implement RM and DLF in C++
- 3.0GHz Linux machine with 32G RAM
- ISCAS 85&89 benchmarks
- Scaled to 28nm nodes
- Lithography simulations and OPC
- Implement rectangular fracturing in [Ma, SPIE'11]
- Sliver parameter $\varepsilon = 5$ nm

Shot Number Comparison

Compared with [SPIE'11], RM reduces shot no. by 37%

DLF: reduces 39%

Sliver Length Comparison

DLF can reduce sliver by 82% cf. [SPIE'11], 67% cf. RM

Runtime Comparison

DLF is very efficient, only 11% runtime cf. [SPIE'11]

Runtime Scalability

DLF scales better than both [SPIE'11] and RM

Conclusion

- This work proposed the first systematic and algorithmic study in EBL L-shaped fracturing
- Two algorithms are proposed: RM and DLF
- Sliver minimization is explicitly considered
- DLF obtained the best results in all metrics
- EBL is under heavy R&D, including massive parallel EBDW.
 - More research needed on EBL-aware physical design