
L-Shape Based Layout Fracturing
for E-Beam Lithography

Bei Yu, Jhih-Rong Gao, and David Z. Pan
Dept. of Electrical & Computer Engineering

University of Texas at Austin

Supported in part by NSF and NSFC

Outline

t Introduction
t Problem Formulation
t Algorithms

›  Rectangular Merging (RM) Algorithm
›  Direct L-Shape Fracturing (DLF) Algorithm

t Experimental Results
t Conclusion

2

EBL
t  E-Beam lithography (EBL)

›  Widely deployed in mask manufacturing
›  Promising candidates for sub-22nm

t  Conventional EBDW: variable shaped beams (VSB)

3

Layout Fracturing
t  Fundamental step before EBL writing
t  Decompose layout pattern => non-overlapping rectangles
t  Shot number dramatically increases for sub-22nm

›  More complicated OPC

4
Courtesy IBM

L-Shape E-beam Shot

t One more aperture cf. rectangular shots
t Potentially reduce shot number by up to 50%

5

Previous Works

t Rectangular fracturing
›  ILP [Kahng, SPIE’04, SPIE’06] or heuristic methods

[Dillon, SPIE’08; Ma+ SPIE’11]

t L-shape fracturing

›  Report w/o detail algorithms [Sahouria, SPIE’10]
›  In geometrical science, heuristic horizontal slicing
›  However, sliver minimization not considered

6

Problem Formulation

t  Input:
›  Layout (a set of polygons)

t Output:
›  Fracture the layout into a set of non-overlapping L-

shapes and rectangles
t Objective:

›  Minimize the shot count (L shapes or rectangles)
›  Minimize the silver length of fractured shots

7

Outline

t Introduction
t Problem Formulation
t Algorithms

›  Rectangular Merging (RM) Algorithm
›  Direct L-Shape Fracturing (DLF) Algorithm

t Experimental Results
t Conclusion

8

Two Approaches

t Rectangular Merging (RM) Algorithm
›  Re-use previous rectangular fracturing results
›  Merge rectangles into L-shapes

t Direct L-Shape Fracturing (DLF) Algorithm
›  Direct L-Shape Generation
›  Avoid redundant operations
›  Nice properties to reduce problem size/complexity

9

Rectangular Merging (RM)
t  Given input rectangles (through conventional VSB fracturing)
t  Construct graph to represent the relationships
t  Edge selection through maximum matching O(nmlogn)

Not optimal
(3 shots)

Optimal
(2 shots)

Direct L-Shape Fracturing
t  Concave vertex: with internal angle is 270o
t  Cut: a horizontal or vertical line segment where at least one

of the two endpoints is a concave vertex
t  Odd-Cut: a cut that has odd number of concave vertices on

one or both sides of the cut
Lemma 1: A polygon with c concave vertices can be
decomposed into L-shapes with upper bound Nup =

concave vertex

Another odd cut

An odd-cut

c / 2!" #$+1

c = 3 è this polygon can
be decomposed into two
L-shapes

t  Chord: A special cut whose two endpoints are both
concave

t  Odd-Chord: a chord that is an odd-cut
Lemma 2: Dividing a polygon through a chord will not
increase Nup
Lemma 3: Dividing a polygon with even number of concave
vertices through an odd-chord can reduce Nup by 1

Direct L-Shape Fracturing

chord Odd-chord

Direct L-Shape Fracturing Algorithm

t Overall Flow

t Step 1: chord selection and division =>
independent sub-polygons

t Step 2: odd-cut detection and L-shape fracturing

Odd-Chord Detection and Selection

14

Odd-Chord Detection
t  Check whether odd-chord, from O(n) to O(1)

›  Each vertex is associated with parity value p
Theorem 1: In a even polygon, chord ab is odd iff pa = pb
t  All odd-chords can be detected in O(nlogn)

Chord Selection
t  Prefer odd-chords

›  To reduce shot count Nup

t  Sliver minimization
t  Maximum weighted matching problem

Odd-Cut Detection

t Check whether a cut is odd, in O(1)
t Each vertex is associated (order number, parity)
t Theorem 2: In odd polygon, cut (a, bc) is an odd-

cut iff

t Odd-cut detection can be finished in O(nlogn)

15

Ob (2) < Of (6), Pb (1) ≠ Pf (0), ✔

Oi (9) > Oc (3), Pi (1) = Pc (1), ✔

Of (6) > Ob (2), Pf (0) ≠ Pb (1), ✖

Effective Odd-Cut Info Update
t  Only update one vertex and four edges, in O(1) time

16

That’s why step 1:
division by chords

Update may not be O(1) if odd-cut is a chord

a(1,0)
b(2,1)

c(3,1)
f(6,0)

g(7,0) h(8,1)

i(9,1) j(10,1)

k(11,0) l(12,0)

d(4,1)
e(5,0)

a(1,0)
b(2,1)

c(3,1)
f(6,0)

g(7,0) h(8,1)

i(9,1) j(10,1)

k(11,1) l(12,1)

d(4,1)
e(5,0)

……

L-Shape Fracturing through Odd-Cut

t  After chord selection, initial polygon is divided
into a set of sub-polygons

t  Fracture each sub-polygon through odd-cuts

Runtime complexity O(n2logn)

Effective Odd-cut info
Update

Speed-up Techniques

Select multiple independent odd cuts simultaneously
t For odd-polygon
(odd # concave pts)

t For even-polygon

18

Practical runtime complexity can be reduced to O(nlogn)

Experimental Results

t  Implement RM and DLF in C++
t 3.0GHz Linux machine with 32G RAM
t  ISCAS 85&89 benchmarks
t Scaled to 28nm nodes
t Lithography simulations and OPC
t  Implement rectangular fracturing in [Ma, SPIE’11]
t Sliver parameter ε = 5nm

19

Shot Number Comparison

t  Compared with [SPIE’11], RM reduces shot no. by 37%
t  DLF: reduces 39%

20

Sliver Length Comparison

21

t  DLF can reduce sliver by 82% cf. [SPIE’11], 67% cf. RM

Runtime Comparison

22

t  DLF is very efficient, only 11% runtime cf. [SPIE’11]

 Runtime Scalability

23

t  DLF scales better than both [SPIE’11] and RM

Conclusion

t This work proposed the first systematic and
algorithmic study in EBL L-shaped fracturing

t Two algorithms are proposed: RM and DLF
t Sliver minimization is explicitly considered
t DLF obtained the best results in all metrics
t EBL is under heavy R&D, including massive

parallel EBDW.
›  More research needed on EBL-aware physical design

24

