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EBL 
t  E-Beam lithography (EBL) 

›  Widely deployed in mask manufacturing 
›  Promising candidates for sub-22nm 

t  Conventional EBDW: variable shaped beams (VSB) 
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Layout Fracturing 
t  Fundamental step before EBL writing 
t  Decompose layout pattern => non-overlapping rectangles 
t  Shot number dramatically increases for sub-22nm 

›  More complicated OPC 
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L-Shape E-beam Shot 

t One more aperture cf. rectangular shots 
t Potentially reduce shot number by up to 50% 
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Previous Works 

t Rectangular fracturing 
›  ILP [Kahng, SPIE’04, SPIE’06] or heuristic methods 

[Dillon, SPIE’08; Ma+ SPIE’11] 

 
t L-shape fracturing 

›  Report w/o detail algorithms [Sahouria, SPIE’10] 
›  In geometrical science, heuristic horizontal slicing 
›  However, sliver minimization not considered 
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Problem Formulation 

t  Input: 
›  Layout (a set of polygons) 

t Output: 
›  Fracture the layout into a set of non-overlapping L-

shapes and rectangles 
t Objective: 

›  Minimize the shot count (L shapes or rectangles) 
›  Minimize the silver length of fractured shots 
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Two Approaches 

t Rectangular Merging (RM) Algorithm 
›  Re-use previous rectangular fracturing results 
›  Merge rectangles into L-shapes 

t Direct L-Shape Fracturing (DLF) Algorithm 
›  Direct L-Shape Generation 
›  Avoid redundant operations 
›  Nice properties to reduce problem size/complexity 
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Rectangular Merging (RM) 
t  Given input rectangles (through conventional VSB fracturing) 
t  Construct graph to represent the relationships 
t  Edge selection through maximum matching O(nmlogn) 

Not optimal 
(3 shots) 

Optimal 
(2 shots) 



Direct L-Shape Fracturing 
t  Concave vertex: with internal angle is 270o 
t  Cut: a horizontal or vertical line segment where at least one 

of the two endpoints is a concave vertex 
t  Odd-Cut: a cut that has odd number of concave vertices on 

one or both sides of the cut 
Lemma 1: A polygon with c concave vertices can be 
decomposed into L-shapes with upper bound Nup =                  

concave vertex 

Another odd cut 

An odd-cut 

c / 2!" #$+1

c = 3 è this polygon can 
be decomposed into two 
L-shapes 



t  Chord: A special cut whose two endpoints are both 
concave 

t  Odd-Chord: a chord that is an odd-cut 
Lemma 2: Dividing a polygon through a chord will not 
increase Nup 
Lemma 3: Dividing a polygon with even number of concave 
vertices through an odd-chord can reduce Nup by 1 

Direct L-Shape Fracturing 

chord Odd-chord 



Direct L-Shape Fracturing Algorithm 

t Overall Flow 

t Step 1: chord selection and division => 
independent sub-polygons 

t Step 2: odd-cut detection and L-shape fracturing  



Odd-Chord Detection and Selection 
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Odd-Chord Detection 
t  Check whether odd-chord, from O(n) to O(1) 

›  Each vertex is associated with parity value p 
Theorem 1: In a even polygon, chord ab is odd iff pa = pb 
t  All odd-chords can be detected in O(nlogn) 
 
Chord Selection 
t  Prefer odd-chords  

›  To reduce shot count Nup 

t  Sliver minimization  
t  Maximum weighted matching problem 



Odd-Cut Detection 

t Check whether a cut is odd, in O(1) 
t Each vertex is associated (order number, parity) 
t Theorem 2: In odd polygon, cut (a, bc) is an odd-

cut iff 

t Odd-cut detection can be finished in O(nlogn) 
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Ob (2) < Of (6), Pb (1) ≠ Pf (0), ✔ 

Oi (9) > Oc (3), Pi (1) = Pc (1), ✔ 

Of (6) > Ob (2), Pf (0) ≠ Pb (1), ✖ 



Effective Odd-Cut Info Update 
t  Only update one vertex and four edges, in O(1) time 
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That’s why step 1: 
division by chords 

Update may not be O(1) if odd-cut is a chord 

a(1,0)
b(2,1)

c(3,1)
f(6,0)

g(7,0) h(8,1)

i(9,1) j(10,1)

k(11,0) l(12,0)

d(4,1)
e(5,0)
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g(7,0) h(8,1)

i(9,1) j(10,1)

k(11,1) l(12,1)

d(4,1)
e(5,0)

……



L-Shape Fracturing through Odd-Cut 

t  After chord selection, initial polygon is divided 
into a set of sub-polygons 

t  Fracture each sub-polygon through odd-cuts 

Runtime complexity O(n2logn) 

Effective Odd-cut info 
Update 



Speed-up Techniques 

Select multiple independent odd cuts simultaneously 
t For odd-polygon  
(odd # concave pts) 
 
t For even-polygon 
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Practical runtime complexity can be reduced to O(nlogn) 



Experimental Results 

t  Implement RM and DLF in C++ 
t 3.0GHz Linux machine with 32G RAM 
t  ISCAS 85&89 benchmarks 
t Scaled to 28nm nodes 
t Lithography simulations and OPC 
t  Implement rectangular fracturing in [Ma, SPIE’11] 
t Sliver parameter ε = 5nm 
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Shot Number Comparison 

t  Compared with [SPIE’11], RM reduces shot no. by 37% 
t  DLF: reduces 39% 
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Sliver Length Comparison 
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t  DLF can reduce sliver by 82% cf. [SPIE’11], 67% cf. RM  



Runtime Comparison 
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t  DLF is very efficient, only 11% runtime cf. [SPIE’11] 



 Runtime Scalability 
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t  DLF scales better than both [SPIE’11] and RM 



Conclusion 

t This work proposed the first systematic and 
algorithmic study in EBL L-shaped fracturing 

t Two algorithms are proposed: RM and DLF 
t Sliver minimization is explicitly considered  
t DLF obtained the best results in all metrics 
t EBL is under heavy R&D, including massive 

parallel EBDW.  
›  More research needed on EBL-aware physical design 
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