High-throughput Electron Beam Direct Writing of VIA Layers by Character Projection using Character Sets Based on One-dimensional VIA Arrays with Area-efficient Stencil Design

<u>Rimon IKENO[†]</u>, Takashi MARUYAMA^{††}, Tetsuya IIZUKA^{†††}, Satoshi KOMATSU[†], Makoto IKEDA[†], and Kunihiro ASADA[†]

⁺VLSI Design and Education Center (VDEC), The University of Tokyo, ⁺⁺e-Shuttle, Inc.,

⁺⁺⁺Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo

□ Introduction

- □ Character Projection (CP) overview
- Efforts for CP throughput improvement

Problems in applying CP to VIA layer exposure

- □ VIA number, density, and arrangement in actual designs
- Approach to improve VIA CP throughput
 - One-dimensional VIA array characters
 - Area-efficient stencil design & character set planning
 - Layout constraints for further throughput improvement

Experimental results

- CP throughput evaluation
- CP throughput improvement

Summary

□ Introduction

- Character Projection (CP) overview
 Efforts for CP throughput improvement
- Problems in applying CP to VIA layer exposure
 - □ VIA number, density, and arrangement in actual designs
- Approach to improve VIA CP throughput
 - One-dimensional VIA array characters
 - Area-efficient stencil design & character set planning
 - Layout constraints for further throughput improvement
- **Experimental results**
 - **CP** throughput evaluation
 - **D** CP throughput improvement
- Summary

Bisectron-Beam Direct Writing (EBDW)

Low-cost 'maskless' exposure solution

 Mask cost explosion in high-resolution lithography

 Low exposure throughput

 1 rectangle / 1 EB shot (Variable Shaped Beam; VSB)

 Limited applications: low-volume products, test chips, ...

□ Character Projection (CP) method in EBDW

- Promising approach for high-throughput EBDW
- □ Shooting multiple figures at once as a character
- □ Characters = "Frequently-appeared layout patterns"
 → Prepared on character stencil
- □ For higher CP throughput \rightarrow more figures in 1 EB shot \rightarrow More character varieties required!

Overview of Character Projection (CP) EBDW

Earlier Efforts for Higher CP Throughput

□ Cell layer (transistors & local wires)

□ 1 cell/shot (major cells only) → E_{CP} >10
 □ >1 cells/shot (cell cluster → character) cluster extraction / rearrangement

Metal layers (interconnect routing) Tile routing: normalized wire segments Matching to predefined characters

 □ VIA layers (interconnect routing) "High degree of freedom"

 "High degree of freedom"
 "Area-efficient stencil design (Du et al./ASP-DAC2012)
 → Just 3 VIAs in 1 character
 → Further improvement?

- Introduction
 - □ Character Projection (CP) overview
 - Efforts for CP throughput improvement
- Problems in applying CP to VIA layer exposure
 - VIA number, density, and arrangement in actual designs
- Approach to improve VIA CP throughput
 - One-dimensional VIA array characters
 - Area-efficient stencil design & character set planning
 - Layout constraints for further throughput improvement
- **Experimental results**
 - **CP** throughput evaluation
 - **D** CP throughput improvement
- Summary

VIA Placement Study in Actual Logic Designs

P&R results of example designs(65nm)

Design	Area [um ²]	Cell#	Cell pin#	VIA1#	VIA1 dens [um ⁻²]
8080 CPU	11,837	4,293	14,623	14,520	1.23
USB 2.0	29,309	7,725	28,414	28,301	0.97
AES Core	60,270	17,328	56,513	56,744	0.94
DCT Core	63,907	13,800	50,938	50,786	0.79
SPARC V8	1,191,590	229,580	929,474	927,562	0.78
SPARC T1	5,933,609	810,278	3,464,043	3,457,402	0.58

□ Observations: VIA# and density in actual designs
□ VIA1# ~ cell pin# > cell# → requiring more E_{CP} than cells
□ VIA1 density ~ 1um⁻² → ~1 VIA in 25 grids (1 grid=0.2um)

Problems in Applying CP to VIA Layers

Requirements for a VIA CP character set All possible combinations of multiple VIA arrangement More VIAs in a character for higher CP throughput Integrated within a limited stencil area

□ Reality of the VIA character set planning

All possible VIA placement: <u>character number explosion</u>
 To achieve higher *E_{CP}* within stencil area limitation...
 Reduce character variations even with more VIAs
 Detailed VIA placement study (*next page*)

Detailed Study on VIA Arrangement (VIA1)

ASP-DAC 2013

Detailed Study on VIA Arrangement (VIA2)

Relative positions of neighboring VIAs (USB 2.0, VIA2 layer)

Considerations on VIA Arrangement

□ VIA1 layer (cell pin to interconnect): ridges at y=0, \pm 9, valleys at y= \pm 4~5

- The library cell architecture (0.2um x 9 tracks) allows cell pin access (connection) to only 4 tracks in the center
- VIAs are arranged as stripes to avoid power/ground lines
- → <u>VIA placement has strong</u> <u>correlations in the X direction</u>

□ VIA2 layer:

- a ridge at y=0, peaks at $(1,\pm3)$
- Many cases of the <u>right figures</u>, but also <u>other random cases</u>

Library cell architecture & VIA1 placement for pin access

Introduction

- □ Character Projection (CP) overview
- **B** Efforts for CP throughput improvement
- Problems in applying CP to VIA layer exposure
 - □ VIA number, density, and arrangement in actual designs
- □ Approach to improve VIA CP throughput
 - One-dimensional VIA array characters
 - Area-efficient stencil design & character set planning
 - Layout constraints for further throughput improvement
- **Experimental results**
 - CP throughput evaluation
 - CP throughput improvement
- Summary

One Dimensional VIA Array Characters

- Only allow <u>one-dimensional VIA arrays</u> as characters
 - VIA position candidates are reduced
 - \rightarrow CP character variation decreases

<u>Two options</u> in VIA array character coding schemes

ASP-DAC 2013

Area-efficient Character Stencil Design

Stencil Design under Area & Size Constraints

Character set planning for stencil design to be adopted to 14nm CP-EBDW equipment specifications

Stencil area: <u>3.6 x 10⁶ grids</u> / Shot size: <u>30 grid x 30 grid</u>

Binary coding character

- average character size = 1 grid (after compression)
- □ character number = 2^{M+1} (M: character size)
- $\square \quad \underline{3.6 \times 10^6} < 2^{M+1} \rightarrow \boxed{M=20}$

Span coding character

 Some options of max VIA number (N) & max character size (M) combination

Max VIA# (N)	Max char size (M)		Stencil area [grid]	Comp. ratio
7	30	621,616	2,894,892	5.80
8	26	726,206	2,625,930	6.65
9	24	880,970	2,689,536	7.43
10	23	1,097,790	2,989,405	8.13
12	22	1,401,292	3,319,648	9.19
21	21	1,048,576	2,330,190	9.62

Layout Constraints for More CP Improvement

Re-consideration on VIA arrangement:

More VIAs on specific tracks

 \rightarrow More VIAs in each shot & less shots for vacant rows

Layout constraints for VIA placement (in detail routing)

VIA2 Layer constraint

ASP-DAC 2013

How?

Introduction

- □ Character Projection (CP) overview
- **B** Efforts for CP throughput improvement
- Problems in applying CP to VIA layer exposure
 - □ VIA number, density, and arrangement in actual designs
- Approach to improve VIA CP throughput
 - One-dimensional VIA array characters
 - Area-efficient stencil design & character set planning
 - Layout constraints for further throughput improvement

Experimental results

- CP throughput evaluation
- CP throughput improvement
- Summary

Experiments and CP Throughput Evaluation

Experiments:

- Automated place & route of 6 example circuits
- with and without the layout constraints to evaluate impact of introducing the layout constraints

CP performance estimation:

□ Shot count estimation

 $(\text{Gshot/wafer}) = \frac{10.0 \times 100}{(\text{layout area})} \times (\text{shot}\#)$

average shot area (100Gs/w) × target shot count = <u>total shot area</u>

Evaluation criteria

□ Shot count target for practical use of CP-EBDW @14nm →100~173 Giga shot/wafer

□ 173 Gs/w: the minimum throughput requirement

□ 100 Gs/w: the target to allow margins of other factors

Results (1): CP Shot Count Estimation

VIA1 shot# with/wo layout constraint (OpenSPARC T1 Core)

			w/o layou	it const	raints	With layout constraints							
Character set	Ν	Μ	Shot# VIA# /shot		G shot /wafer	Shot#	VIA# /shot	G shot /wafer					
Binary coding		20	1,677,663	2.06	282.7	1,032,441	3.32	174.0					
Span coding	7	30	1,301,248	2.66	219.3	858,330	3.99	(144.7					
	8	26	1,437,692	2.40	242.3	916,924	3.74	154.5					
	9	24	1,570,835	2.20	264.7	986,128	3.48	166.2					
	10	23	1,597,913	2.16	269.3	994,780	3.44	167.7					
	12	22	1,627,868	2.12	274.3	1,005,818	3.41	169.5					
	21	21	1,651,097	2.09	278.3	1,017,748	3.37	171.5					

The layout constraints improved <u>VIA#/shot</u> (=CP efficiency) from <u>200~300 Gs/w range to 140~175 Gs/w</u> range

□ Span-coding (N=7, M=30) achieved the best performance

Results (2): CP Shot Count Summary

VIA1/2 shot# of 6 example circuits with layout constraints

	VI	A1	VI	A2	Span adding:
Design	VIA# /shot	#shot /wafer	VIA# /shot	#shot /wafer	Span-coding: max VIA#: N= 7 max size: M = 30
8080 CPU	5.94	205.7	3.11	311.9	
USB 2.0	6.09	156.2	2.77	272.8	
AES Core	5.64	161.6	2.76	266.7	
DCT Core	4.92	159.2	2.52	248.3	
SPARC V8	4.71	162.9	2.64	269.2	
SPARC T1	3.99	144.7	2.31	236.1	
Average	4.21	148.1	2.38	242.1	

VIA#/shot: <u>4~6</u> (VIA1), <u>2.3~3.1</u> (VIA2)

Shot#/wafer <u>148.1 Gs/w</u> (VIA1) → Target achieved 242.1 Gs/w (VIA2) → Not achieved

Results (3): Improvement by Tighter Constraints

ASP-DAC 2013

Introduction

- □ Character Projection (CP) overview
- Efforts for CP throughput improvement
- Problems in applying CP to VIA layer exposure
 - □ VIA number, density, and arrangement in actual designs
- Approach to improve VIA CP throughput
 - One-dimensional VIA array characters
 - Area-efficient stencil design & character set planning
 - Layout constraints for further throughput improvement
- **Experimental results**
 - **CP** throughput evaluation
 - CP throughput improvement

Summary

Summary

□ Difficulty in applying CP-EBDW to VIA layers

- Character explosion when increasing VIA number
- □ VIA # / density / arrangement studies in actual designs

One-dimensional VIA array characters

- □ <u>Character number suppression</u> by limited arrangement
- Area-efficient stencil design & character set planning
- Layout constraints for further throughput improvement
- **Experimental results and conclusions**
 - □ Good CP throughput by <u>span coding</u> character set
 - Improved CP throughput with little interconnect impact by tighter layout constraints
 - $\Box \text{ <u>VIA1: <150 Gs/w} \rightarrow \text{target achieved (100~173 Gs/w)}$ </u>
 - □ VIA2: ~200 Gs/w \rightarrow slightly missed / tuning constraints?

Thank you!

Appendices

Required Character Sets for Span Coding

Extended to fit to a longer char.

Required character sets are only following two groups

Example of Character Ordering Algorithm

Details of Character Ordering in Page 15

	S	par	ר כמ	oding	cha	ara	acte	er	set	t (\	/IA	n	um	be	er:	N =	=4,	M	lax	si	ze	: N	1 =	6)		
No.				Order													-									
1	1	1	1	1	1	1	1																			
2	1	1	2	2		1	1	2																		
3	1	1	3	9									1	1	3											
4	1	1	4	18																		1	1	4		
5	1	2	1	3			1	2	1																	
6	1	2	2	5					1	2	2															
7	1	2	3	15															1	2	3					
8	1	3	1	13													1	3	1							
9	1	3	2	10										1	3	2										
10	1	4	1	19																			1	4	1	
11	2	1	1	8								2	1	1												
12	2	1	2	4				2	1	2																
13	2	1	3	12												2	1	3								
14	2	2	1	7							2	2	1													
15	2	2	2	6						2	2	2														
16	2	3	1	16																2	3	1				
17	3	1	1	17																	3	1	1			
18	3	1	2	14														3	1	2						
19	3	2	1	11											3	2	1									
20	4	1	1	20																				4	1	1
Com	pres	ssec	d VI	A array	1	1	1	2	1	2	2	2	1	1	3	2	1	3	1	2	3	1	1	4	1	1

ASP-DAC 2013

Results (4): VIA Character Usage Trend vs. Area

