
Compiler-Assisted Refresh Minimization for
Volatile STT-RAM Cache

Qingan Li, Jianhua Li, Liang Shi,
Chun Jason Xue, Yiran Chen, Yanxiang He

City University of Hong Kong

University of Pittsburg

Outline

• Background

• Observation

• Solution

• Experiments

STT-RAM for cache

• STT-RAM compared to traditional SRAM caches:

– Leakage power consumption

– Scalability

 high density slow write
high write
energy

low leakage
power

 SRAM caches vs STT-RAM caches

﻿Memory

(65nm)

Capacity Leakage
power

Latency Dyn. eng.

read write read write

SRAM
(3.66mm2)

128KB 2.09W 2.25ns 2.26ns 0.90nJ 0.80nJ

STT-RAM

(3.60mm2)

512KB 0.26W

2.32ns 11.02ns 0.86nJ 5.00nJ

STT-RAM for cache

• STT-RAM has been proposed as a new candidate for
building cache.

• Lots of work has been done to mitigate the costly
write operations on STT-RAM

– smart write buffer, early write termination, hybrid cache,
etc.

– relaxing the non-volatile property

Volatile STT-RAM for cache

Design 1 Design 2 Design 3

Cell size (F2) 23 22 27.3

MTJ sw time (ns) 10 5 1.5

Retention Time 4.27yr 3.24s 26.5μs

Write Latency (ns) 10.378 5.37 1.5

Write Dyn. Eng(nJ) 0.958 0.466 0.187

As the retention time decreases, write speed and write dynamic energy
are improved.

• Volatile STT-RAM

– Pros: trade non-volatility for write performance

– Cons: need refresh schemes to ensure correctness

Refresh schemes for volatile STT-RAM
cache

• The reduced retention time (T) of STT-RAM cache needs
refresh schemes to avoid data loss.

• Refresh schemes:

– Dram-style refresh:
• refresh all blocks within every retention time T.

– Full-refresh1:
• attach a counter to each block to track its lifespan asynchronously.

• Only refresh the blocks not written or refreshed within T.

– Dirty-refresh2:
• Only refresh dirty blocks not written or refreshed within T.

Refresh schemes for volatile STT-RAM
cache

refresh consumes
lots of energy

• Each refresh operation for STT-RAM cache involves:

– read data from cache and write them into buffer

– read data from buffer and write them back into cache

• Refresh scheme is by-product of volatile STT-RAM
design, and consumes lots of energy.

 This paper proposes a compilation approach to minimize the required
refresh operations to improve the energy efficiency.

Outline

• Background

• Observation

• Solution

• Experiments

Observation 1: N-refresh scheme

• Some data blocks are left in idle status for a long
time before next use. (An extreme case: dead blocks)

• Previous refresh schemes refresh these blocks many
times for little benefits.

• We propose a N-refresh scheme:

– refresh blocks sequently for at most (N-1) times.

– can reduce the number of refresh operations

– only need add logN bits to the counter attached to each
block (extension over Full-refresh scheme)

Observation 2: passive & active refresh

• To recharge the lifespan of a cache block

– passive refresh: depends on memory trace and cache
misses
• loading data from the main memory to this cache block

• an instruction writes data to this block (the whole block will be
passively refreshed)

– active refresh: depends on refresh schemes (full-refresh,
dirty-refresh, N-refresh)

• So, within the retention time T, if there is a passive
refresh or an active refresh, there is no data loss.

When do we need an active refresh ?

• Given a data write trace, Dtrace, with timing
information

allocation : {a,b}, {c,d}

retention time T: 5

• Transform the data write trace into a block write
trace: is the interval between two writes less than T?

Red: write trace in
block 1, need refresh:

Green: write trace in
block 2 , need refresh: (15-9)/T + (21-15)/T + (27-21)/T

(12-6)/T + (18-12)/T + (24-18)/T + (30-24)/T

a c b d a c b d a

6 9 12 15 18 21 24 27 30

data write trace

time stamp(us)

a c b d a c b d a

6 9 12 15 18 21 24 27 30

data write trace

time stamp(us)

Reduce active refresh by data layout

allocation 1: {a,b}, {c,d}

Totally 9 active refresh.

allocation 2: {a,c}, {b,d}

Totally 6 active refresh.

We found that, by re-arrange the data layout, we can change the

behavior of passive refresh such that, the required number of

active refresh is minimized.

a c b d a c b d a

6 9 12 15 18 21 24 27 30

data write trace

time stamp(us)

Outline

• Background

• Observation

• Solution

• Experiments

Problem

• Given a data write trace, Dtrace, with timing
information,

– allocate data objects into memory blocks

– transform the data write trace into a block write trace,
Btrace, by mapping the data to the owner memory blocks

– split Btrace into a set of sub-traces, where each sub-trace
recording writes to the same block

– compute the required number of active refresh for each
sub-trace

• Solution: find an allocation to minimize:

nRfr
bi

= TS
bw j+1

i -TS
bw j

i() T
ê
ëê

ú
ûú

j=1

N

å + TS
bw1

i -TSbegin() Tê
ë

ú
û
+ TSend -TS

bwN
i() Tê

ë
ú
û


i

binRfr

Problem (more details)

• How to compute the required number of active
refresh for each sub-trace

• T: the retention time

• N : the number of writes to b

• bwi
j and bwi

j+1: a pair of consecutive writes to b

• TSbw: the time stamp of a block write, bw

• Tsbegin & TSend: the starting/ending time of the program

• the objective: This problem is hard
to solve.

Need simplification!

  

  
  T

T

T

1

1
1

i
N

i

i
j

i
j

i

bwend

beginbw

N

j
bwbwb

TSTS

TSTS

TSTSnRfr











i

binRfrmin

Simplified problem

• Given a data write trace, Dtrace, with timing
information,

– extract a set of sub-traces from Dtrace, where each sub-
trace recording writes to a pair of data objects

a b a b a

6 12 18 24 30

(a,b) sub-trace

time stamp(us)

(a,c) sub-trace

time stamp(us)

(a,d) sub-trace

time stamp(us)

(b,d) sub-trace

time stamp(us)

(c,d) sub-trace

time stamp(us)

(b,c) sub-trace

time stamp(us)

a c a c a

6 9 18 21 30

a d a d a

6 15 18 27 30

c d c d

9 15 21 27

b d b d

12 15 24 27

c b c b

9 12 21 24

Simplified problem

– For each sub-trace corresponding to objects x and y, if
assigning x and y into the same block, the cost is
approximated as:

• M: the number of data writes in the sub-trace

• dwk and dwk+1: a pair of consecutive writes to x or y

 otherwise, the cost is zero.

– The goal is to find an allocation (mapping data to memory
blocks) to minimize:

 xi,j is an binary variable to indicate whether i and j are
allocated into the same block

 






Datai

ij
Dataj

jiji xt ,,cos

  





M

k
dwdwyx

kk

TSTSt
1

, Tcos
1

Heuristic algorithm

• This simplified problem can be easily modeled as a
quadratic assignment problem (QAP), which is NP-
hard in general.

• A heuristic algorithm to solve this simplified problem

1. Encode the problem using a complete graph G: encode
each data object as the vertex, and costi,j as the edge
weight

2. Allocate a pair of objects into the same block, if the
related edge weight is minimum among all edges of G

3. Update G by merging this pair of objects

4. If the remaining graph is not empty, go to 2

Heuristic algorithm

– costi,j is encoded in a complete graph, as the edge weight

– assume each block can hold only three objects

– merge function: min {edge1, edge2, ...}

5 = min{a-e, d-e}

=min{5, 6}

Outline

• Background

• Observation

• Solution

• Experiments

Experimental setup

Full-
refresh

Dirty-
refresh

N-
refresh

Default
data
layout

FR DR NR

Proposed
data
layout

FR-DL DR-DL NR-DL

Parameter Value

processor
single core, in order execution, 2
GHz

data cache

16KB, 32B line size, LRU, 4-way

write allocation, write back

read/write latency: 2/4 cycles

retention time:
53000 cycles (26.5μs)

read/write dynamic energy:
0.035/0.187 nJ
refresh dynamic energy:
0.356 nJ1

main
memory

300 cycles latency

Full-refresh Dirty-refresh N-refresh
Default data
layout

FR DR NR

Proposed
data layout

FR-DL DR-DL NR-DL

Normalized to FR: Energy

Reduces active refresh:
FR-DL: 27.8%
DR-DL: 72.7%
NR-DL: 73.3%

Reduces dynamic energy:
FR-DL: 12.1%
DR-DL: 26.8%
NR-DL: 27.6%

Full-refresh Dirty-refresh N-refresh
Default data
layout

FR DR NR

Proposed
data layout

FR-DL DR-DL NR-DL

Normalized to FR: Performance

Increase cache hit rates:
FR-DL: 1.3%
DR-DL: -0.6%
NR-DL: 0.7%

Reduce cycles:
FR-DL: 8.1%
DR-DL: -9.6%
NR-DL: 0.6%

Conclusion

• Volatile STT-RAM cache has been proposed for
better performance. But it requires refresh schemes
to avoid data loss. And, refresh schemes bring about
additional energy overhead.

• This paper proposes a compilation approach to
minimize the refresh overhead by re-arranging data
layout.

• Experiments show that, this approach can reduce
refresh operations (73.3%), energy consumption
(27.6%), and cycles (0.6%).

Thank you!

Questions?

Sensitiveness to different cache block size

For adpcm and bcnt, the proposed method can consistently reduce the active

refresh, and increase cache hit rates, for varied cache block size.

Sensitiveness to different cache size

For adpcm and bcnt, the proposed method can consistently reduce the active

refresh, and increase cache hit rates, for varied cache size.

