
Fractal Video Compression in OpenCL:

An Evaluation of CPUs, GPUs, and FPGAs as

Acceleration Platforms

Doris Chen, Deshanand Singh

Jan 24th, 2013

Platform Evaluation Challenges

 Conducting a fair platform evaluation is difficult
 Platforms have different programming models

 CPUs – C/C++

 GPU - vendor-specific languages (CUDA)

 FPGAs – RTL languages (Verilog, VHDL)

 Hard to predict behaviour ahead of time without actual

implementation

 Designers often select the platform based on device specs
 Need to consider the actual functionality needed

2

OpenCL Standard

 A platform-independent standard
 Target Host + Accelerator applications

 Data parallelism is explicitly specified
 Host – manages data and control flow

 Kernel – highly parallel section to be accelerated (multi-core CPU, GPU, or FPGA)

 Same code can be easily targeted to different platforms for

performance comparison

3

Accelerator

L
o

c
a

l M
e

m

G
lo

b
a
l M

e
m

L
o

c
a

l M
e

m

L
o

c
a

l M
e

m

L
o
c
a
l M

e
m

Accelerator Accelerator Accelerator Processor

__kernel void

sum(__global float *a,

 __global float *b,

 __global float *y) {

 int gid = get_global_id(0);

 y[gid] = a[gid] + b[gid];

}

main() {

 read_data(…);

 manipulate(…);

 clEnqueueWriteBuffer(…);

 clEnqueueNDRange(…,sum,…);

 clEnqueueReadBuffer(…);

 display_result(…);

}

Objective

 A programming model study using OpenCL

 Implement fractal compression in OpenCL
 An video encoding algorithm

 Code is ported to and optimized for multi-core CPUs, GPUs and

FPGAs
 Introduce Altera’s OpenCL-to-FPGA Compiler

 Compare performance between multi-core CPUs, GPUs, and FPGAs

4

Iterated Functions for Fractal Compression

 Based on the theory of iterated function systems (IFS)

 Consider a pixel value of 4
 Can be expressed as the recurrence relation:

 Can be shown that the relation resolves to 4 regardless of initial value

 We can represent the pixel with 2 values {0.5, 2}

5

0

2

4

6

8

10

12

Number of Iterations

Initial Value

Converged Value

x ← x * 0.5 + 2

x ← x * 0.5 + 2

Image Compression

 Express a N x N image as a 1-D vector

 Find transformation matrix A, and vector C such that

 We would recursively apply this to arrive at the image
 Do not need the original image

 Regenerate the image from random data with A and C

 Not quite useful when performing image compression!
 Instead of N2 pixel values, have a N2 x N2 matrix and a N2 vector !!

6

Fractal Image Compression

 Creation of a codebook

 Take 8x8 regions of the image, and compress into 4x4
 Each 4x4 pixel is an average of a 2x2 region

 Generates a library of codebook images

7

4-Pixel Average

4-Pixel Average

4-Pixel Average

8
-P

ix
e
ls

8-Pixels

4-Pixels

4
-P

ix
e
ls

Original Image

First

Codebook

Entry

Using the Codebook

 Codebook library help generate matrix A and vector C

 For each region Ri, find the codebook entry that best minimizes error
 After applying a scale factor si, and an offset oi

 Compute the summation of absolute differences (SAD)
 Compare Ri with all Dj in the codebook

8

Codebook

*

+

oi

si

Dj

Original Image

Ri

4x4

regions

 After finding the best approximation for each Ri, we may have a set of

equations such as the following:

Using the Codebook

C

68*1.1

15*75.0

107*25.0

994095

10231

580







DR

DR

DR



P ≈

P

TD

TD

TD

AP





















99

1023

58

*1.1

*75.0

*25.0



Fractal Code

 Each Ri can be expressed as:

 Transmit 3 values for each 4x4 region
 Best matching codebook entry j, scale factor si, and offset oi

 This forms the fractal code for the image
 Compression achieved due to transmission of a small number of coefficients

10

Image Encoding / Decoding

11

Read Image Data

Process to Frames

Create Codebook

SAD-based Search

Generate Fractal

Codes

Encoding

Start with blank

Image

Create Codebook

Apply Fractal Codes

Decoding

Converged?
No

Yes

convergence typically

occurs within 4-5 iterations

Iteration 0

Decoding Example

12

Original Image Iteration 1 Iteration 2 Iteration 3

SNR = 24.999 SNR = 27.4463 SNR = 29.4954 dB

 Encode new frames using the codebook of the original frame

 Cross-coding experiment showed average PSNR loss of only ~1dB
 Use the codebook of one image to encode another

 Sequential frames are generally similar in nature (less diverse than random images)

Fractal Video Encoding General Approach

13

Encode f1 using c1

Send

fractal

code

Regenerate f1 from code (f1’)

Generate codebook c1’

from f1’

Generate codebook c1

from frame f1

Encode f2 using c1

Regenerate f2 from code

using c1’  f2’

Optimized Kernel Code

14

__kernel void compute_fractal_code(short* currImage, short* codeBook, ...) {

 short myImage[16], centry[16];

 int average = 0;

 int imageOffset = get_global_id(0) * 16;

 for (each pixel i in region) { //loop is unrolled

 short val = currImage[imageOffset+i];

 average += val;

 myImage[i] = val; }

 average >>= 4; //divide by 16 to get average

 for (each pixel in region) //loop is unrolled

 myImage[i] -= average;

 ushort best_sad = 16 * 256 * 2;

 int bestCodebookEntry = -1, bestScale = -1;

 for (each codebook entry icode) {

 for (i=0; i<16; i++) //loop is unrolled

 centry[i] = codeBook[icode*16+i];

 for (each scale factor sFac) {

 ushort sad = 0;

 for (i=0; i<16; i++) //loop is unrolled

 sad += abs(sFac * centry[i] - myImage[i]);

 if (sad < best_sad) {

 best_sad = sad;

 bestCodebookEntry = icode;

 bestScale = sFac;

}}}

Compare against all

codebook entries

Compute average

(offset)

7 scale factors
{1.0, 0.75, 0.5, 0.25, -0.25, -0.5, -0.75, -1.0}

Platforms Evaluated

 Used the latest platforms available at time of writing

 Used publicly available video sequences
 Full-color 704x576 videos

 SNRs > 30dB indicate a high quality result

 Can achieve ~9.7x compression for Y plane

 Higher for Cr and Cb planes

15

Multi-Core CPU Results

 Intel Xeon W3690
 6 cores running at 3.46GHz, plus hyperthreading

 12 MB on-chip cache

 Used Intel OpenCL SDK
 No communication overhead since kernels run on same device as host

 Kernel time defined as the average kernel runtime per frame processed

 8x improvement when parallelized
 Run 1 thread per 4x4 region (no inter-thread communication)

 Fixed-point implementation actually hurts performance
 The number of instructions increased

16

GPU Architecture

 Highly optimized processors known for graphics computation

 Designed to maximize application throughput

17

Instruction Cache

Register File

SFU

SFU SP SP

SP SP

Uniform Cache

Interconnect Network

SFU

SFU

Warp Scheduler Warp Scheduler

Dispatcher Dispatcher

SP SP

SP SP

SP SP SP SP

LD/ST

LD/ST

LD/ST

Shared Memory/L1 Cache

Fermi GPU Streaming

Multiprocessor

 High memory bandwidth (144GB/s)

 An array of compute units

- Streaming Multiprocessor

 Process tens of thousands of threads in

parallel

- Hardware support for context switching

between groups of threads

 Programmed using CUDA or NVIDIA

OpenCL SDK

GPU Results

 Fractal encoding algorithm seems to be a good fit for GPU
 Works on small independent regions at a time (1 thread per 4x4 region)

 GPU can launch thousands of threads in parallel for each region

 Low demand for shared memory or local registers

 Specify workgroups (W) due to GPU hierarchy
 A group of threads that cooperate to solve a sub-problem

 All threads in the workgroup run on the same SMP (CUDA core)

 Tradeoff in workgroup size
 More threads  Allows for a greater ability for the GPU to hide high-latency operations

 More threads  Greater demand on shared resources (eg. Registers)

18

FPGAs as Accelerators

 An array of programmable logic connected with a grid of

programmable routing wires

 Flexible, able to implement a customized datapath

 Much lower power in comparison to CPUs and GPUs

 Memory bandwidth generally

 much lower
 Depends on board design

 Traditionally implemented using

 hardware description languages
 Intimate knowledge of device architecture

 and cycle accuracy required

 Can be a challenge for HPC adoption

19

I/O

I/O

Logic Blocks

(ALUTs)

DSP Blocks

(multipliers)

Memory

Blocks

(RAMs)

Altera OpenCL SDK

 A high-level synthesis tool that compiles OpenCL code to HDL for

FPGA implementation

 Translates the kernel to hardware by creating a circuit to

implement each operation

20

Load Load

+

Store

__kernel void
sum(__global const float *a,
__global const float *b,
__global float *answer) {
 int xid = get_global_id(0);
 answer[xid] = a[xid] + b[xid];
}

 Run threads in parallel using the same hardware

 Each parallel thread is associated with an ID
 Indicates the subset of data it operates on

Pipeline Parallelism

Load Load

Store

+

0

Load Load

Store

+

0

1

Load Load

Store

+
0

1

2

(a) First Cycle (b) Second Cycle (c) Third Cycle

System Solution

 Compiler creates interfaces to external and internal memory

 Automatically timing closed

22

FPGA

Kernel
Pipeline

Kernel
Pipeline

Kernel
Pipeline

PCIe

D
D

R
x

x86 /
External

Processor

External
Memory

Controller
& PHY

M9K

M9K

M9K

M9K

M9K

M9K

Global Memory Interconnect

Local Memory Interconnect

External
Memory

Controller
& PHY

Fractal Video Kernel

23

__kernel void compute_fractal_code(short* currImage, short* codeBook, ...) {

 short myImage[16], centry[16];

 int average = 0;

 int imageOffset = get_global_id(0) * 16;

 for (each pixel i in region) { //loop is unrolled

 short val = currImage[imageOffset+i];

 average += val;

 myImage[i] = val; }

 average >>= 4; //divide by 16 to get average

 for (each pixel in region) //loop is unrolled

 myImage[i] -= average;

 ushort best_sad = 16 * 256 * 2;

 int bestCodebookEntry = -1, bestScale = -1;

 for (each codebook entry icode) {

 for (i=0; i<16; i++) //loop is unrolled

 centry[i] = codeBook[icode*16+i];

 for (each scale factor sFac) {

 ushort sad = 0;

 for (i=0; i<16; i++) //loop is unrolled

 sad += abs(sFac * centry[i] - myImage[i]);

 if (sad < best_sad) {

 best_sad = sad;

 bestCodebookEntry = icode;

 bestScale = sFac;

}}}

FPGA Results

 Used Stratix IV and V FPGAs
 Easy to retarget the OpenCL code; no code change required

 Because of pipeline parallelism, performance increases with

more copies of pipeline
 Control this with loop unrolling

 Fixed-point computations improve performance significantly

24

Summary

 Performed platform evaluation using OpenCL

 Implemented fractal encoding and map it efficiently for multi-core

CPUs, GPUs, and FPGAs

 Showed that core computation can be 3x faster on FPGA vs. GPU

with 8x less power

 Using a High Level Synthesis tool can dramatically reduce the time

required for FPGA implementation

25

Platform Kernel

Runtime

FPS Board

Power

Multi-Core CPU (Intel Xeon W3690) 196.1 4.6 130 W

GPU (NVIDIA Fermi 2075) 5.17 53.1 215 W

FPGA (Altera Stratix V 5SGXA7) 1.72 74.4 25 W

Thank You

Backup

Objective

 A programming model study using OpenCL

 Implement fractal compression in OpenCL
 An video encoding algorithm based on iterated function systems (IFS)

 Code is ported to and optimized for multi-core CPUs,

GPUs and FPGAs

 Introduce Altera’s OpenCL-to-FPGA Compiler

 Performance comparisons
 Between multi-core CPUs, GPUs, and FPGAs

 Between OpenCL and hand-coded RTL implementations

28

Fractal Video Compression

 Encode new frames using the codebook of the original frame

 Cross-coding experiment
 Use the codebook of one image to encode another

 Show an average loss in PSNR of only ~1dB

29

 Aerial Airplane Balloon Girl Lenna Mandrill Parrots Pepper Sailboat Couple Milkdrop

Aerial 27.5 25.7 34.1 30.8 27.6 24.6 27.9 26.5 27.1 30.5 30.0

Airplane 27.0 27.3 34.0 31.0 28.2 24.3 28.5 27.1 27.4 30.3 31.7

Balloon 26.9 25.1 34.9 30.2 27.4 24.1 27.5 25.8 26.5 30.3 29.6

Girl 27.0 25.1 34.6 32.1 28.0 24.2 27.6 26.4 26.9 30.9 29.7

Lenna 26.9 26.0 34.6 31.3 29.5 24.3 28.4 27.1 27.2 31.1 31.1

Mandrill 27.0 25.4 34.0 30.7 27.8 24.6 27.8 26.6 26.8 30.9 29.6

Parrots 27.1 26.3 34.8 31.2 28.5 24.2 28.7 27.0 27.3 30.7 30.9

Pepper 27.4 26.6 35.0 31.9 29.1 24.6 28.7 28.7 28.3 31.8 31.6

Sailboat 27.5 27.0 34.8 31.6 28.5 24.7 28.7 27.5 28.3 31.3 31.5

couple 27.1 25.1 34.7 30.9 27.7 24.3 27.6 26.6 26.8 31.6 29.8

milkdrop 26.9 25.8 34.1 31.0 27.5 23.9 28.0 26.3 26.7 30.1 31.1
Average

(dB) 26.9 25.1 34.0 30.2 27.4 23.9 27.5 25.8 26.5 30.1 29.6

Loss (dB) -0.6 -2.3 -1.0 -1.9 -2.1 -0.7 -1.2 -2.9 -1.8 -1.5 -1.5

Hand-coded RTL Implementation

 Onchip frame buffer and codebook

30

Image Block

Register Ri
Scaling Block (s*Dj)

+ +

Ri,0[8..0] Ri,15[8..0]

sDj,0[8..0] sDj,15[8..0]

From Frame Buffer

SRAM
Codebook RAM

-

M
S

B

-
M

S
B

+

D
j,0 [8

..0
]

D
j,1

5 [8
..0

]

16-Value Average

- - -
-

Min Error[11..0]

Error < Min Error

Absolute Value

jbest En En

j

Addr[9..0]

Q[143...0]

Counter[9..0]

OpenCL vs. Handcoded

 Core computation replicated for each scale factor

 OpenCL design flow greatly simplifies FPGA implementation
 Automates external interfacing such as DDR and PCIe

31

Handcoded OpenCL SDK

Frame buffer On-chip memory Global memory

Codebook On-chip memory Global memory

Unroll 4x 24x

Development Time >1 month Hours

