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Platform Evaluation Challenges 

 Conducting a fair platform evaluation is difficult 
 Platforms have different programming models 

 CPUs – C/C++ 

 GPU - vendor-specific languages (CUDA) 

 FPGAs – RTL languages (Verilog, VHDL) 

 Hard to predict behaviour ahead of time without actual 

implementation 

 Designers often select the platform based on device specs 
 Need to consider the actual functionality needed 
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OpenCL Standard 

 A platform-independent standard  
 Target Host + Accelerator applications  

 Data parallelism is explicitly specified 
 Host – manages data and control flow 

 Kernel – highly parallel section to be accelerated (multi-core CPU, GPU, or FPGA) 

 Same code can be easily targeted to different platforms for 

performance comparison 
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Accelerator Accelerator Accelerator Processor 

__kernel void 

sum(__global float *a, 

    __global float *b, 

    __global float *y)  { 

  int gid = get_global_id(0); 

  y[gid] = a[gid] + b[gid]; 

} 

main() { 

   read_data( … ); 

   manipulate( … ); 

   clEnqueueWriteBuffer( … ); 

   clEnqueueNDRange(…,sum,…); 

   clEnqueueReadBuffer( … ); 

   display_result( … ); 

} 



Objective  

 A programming model study using OpenCL 

 Implement fractal compression in OpenCL 
 An video encoding algorithm 

 Code is ported to and optimized for multi-core CPUs, GPUs and 

FPGAs 
 Introduce Altera’s OpenCL-to-FPGA Compiler 

 Compare performance between multi-core CPUs, GPUs, and FPGAs 
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Iterated Functions for Fractal Compression 

 Based on the theory of iterated function systems (IFS) 

 Consider a pixel value of 4 
 Can be expressed as the recurrence relation: 

 

 Can be shown that the relation resolves to 4 regardless of initial value 

 We can represent the pixel with 2 values {0.5, 2} 
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Image Compression 

 Express a N x N image as a 1-D vector 

 

 Find transformation matrix A, and vector C such that  

 

 We would recursively apply this to arrive at the image 
 Do not need the original image 

 Regenerate the image from random data with A and C 

 Not quite useful when performing image compression! 
 Instead of N2 pixel values, have a N2 x N2  matrix and a N2 vector !! 
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Fractal Image Compression 

 Creation of a codebook 

 Take 8x8 regions of the image, and compress into 4x4 
 Each 4x4 pixel is an average of a 2x2 region 

 Generates a library of codebook images 
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Using the Codebook  

 Codebook library help generate matrix A and vector C 

 For each region Ri, find the codebook entry that best minimizes error 
 After applying a scale factor si, and an offset oi 

 Compute the summation of absolute differences (SAD) 
 Compare Ri with all Dj in the codebook 
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 After finding the best approximation for each Ri, we may have a set of 

equations such as the following: 

Using the Codebook 
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Fractal Code 

 Each Ri can be expressed as: 

 

 Transmit 3 values for each 4x4 region 
 Best matching codebook entry j, scale factor si, and offset oi 

 This forms the fractal code for the image 
 Compression achieved due to transmission of a small number of coefficients 
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Image Encoding / Decoding 
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Iteration 0 

Decoding Example 
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Original Image Iteration 1 Iteration 2 Iteration 3 

SNR = 24.999 SNR = 27.4463 SNR = 29.4954 dB 



 Encode new frames using the codebook of the original frame 

 Cross-coding experiment showed average PSNR loss of only ~1dB 
 Use the codebook of one image to encode another 

 Sequential frames are generally similar in nature (less diverse than random images) 

 

Fractal Video Encoding General Approach 

13 

Encode f1 using c1 

Send 

fractal 

code 

Regenerate f1 from code (f1’) 

Generate codebook c1’ 

from f1’ 

Generate codebook c1 

from frame f1 

Encode f2 using c1 

Regenerate f2 from code 

using c1’   f2’ 



Optimized Kernel Code 
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__kernel void compute_fractal_code(  short* currImage, short* codeBook, ...) { 

  short myImage[16], centry[16]; 

 

  int average = 0; 

  int imageOffset = get_global_id(0) * 16; 

  for (each pixel i in region) {  //loop is unrolled 

    short val = currImage[imageOffset+i]; 

    average += val; 

    myImage[i] = val; } 

  average >>= 4; //divide by 16 to get average 

  for (each pixel in region) //loop is unrolled 

    myImage[i] -= average;  

 

  ushort best_sad = 16 * 256 * 2;  

  int bestCodebookEntry = -1, bestScale = -1; 

  for (each codebook entry icode ) { 

       for (i=0; i<16; i++) //loop is unrolled 

            centry[i] = codeBook[icode*16+i]; 

       for (each scale factor sFac) { 

            ushort sad = 0; 

            for (i=0; i<16; i++) //loop is unrolled 

               sad += abs(sFac * centry[i] - myImage[i]); 

            if (sad < best_sad) { 

               best_sad = sad;  

               bestCodebookEntry = icode; 

               bestScale = sFac; 

}}} 

Compare against all 

codebook entries 

Compute average 

(offset) 

7 scale factors  
{1.0, 0.75, 0.5, 0.25, -0.25, -0.5, -0.75, -1.0} 



Platforms Evaluated 

 Used the latest platforms available at time of writing 

 

 

 

 Used publicly available video sequences 
 Full-color 704x576 videos 

 SNRs > 30dB indicate a high quality result 

 Can achieve ~9.7x compression for Y plane  

 Higher for Cr and Cb planes 
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Multi-Core CPU Results 

 Intel Xeon W3690 
 6 cores running at 3.46GHz, plus hyperthreading 

 12 MB on-chip cache 

 Used Intel OpenCL SDK 
 No communication overhead since kernels run on same device as host 

 Kernel time defined as the average kernel runtime per frame processed 

 

 

 

 

 8x improvement when parallelized 
 Run 1 thread per 4x4 region  (no inter-thread communication) 

 Fixed-point implementation actually hurts performance 
 The number of instructions increased 
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GPU Architecture 

 Highly optimized processors known for graphics computation 

 Designed to maximize application throughput 
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GPU Results 

 Fractal encoding algorithm seems to be a good fit for GPU 
 Works on small independent regions at a time (1 thread per 4x4 region) 

 GPU can launch thousands of threads in parallel for each region 

 Low demand for shared memory or local registers 

 Specify workgroups (W) due to GPU hierarchy 
 A group of threads that cooperate to solve a sub-problem 

 All threads in the workgroup run on the same SMP (CUDA core) 

 Tradeoff in workgroup size 
 More threads  Allows for a greater ability for the GPU to hide high-latency operations 

 More threads  Greater demand on shared resources (eg. Registers) 
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FPGAs as Accelerators 

 An array of programmable logic connected with a grid of 

programmable routing wires 

 Flexible, able to implement a customized datapath 

 Much lower power in comparison to CPUs and GPUs 

 Memory bandwidth generally  

     much lower 
 Depends on board design 

 Traditionally implemented using 

     hardware description languages 
 Intimate knowledge of device architecture 

 and cycle accuracy required 

 Can be a challenge for HPC adoption 
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Altera OpenCL SDK 

 A high-level synthesis tool that compiles OpenCL code to HDL for 

FPGA implementation 

 

 Translates the kernel to hardware by creating a circuit to 

implement each operation 
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__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) { 
  int xid = get_global_id(0); 
  answer[xid] = a[xid] + b[xid]; 
} 



 Run threads in parallel using the same hardware 

 Each parallel thread is associated with an ID 
 Indicates the subset of data it operates on 

 

Pipeline Parallelism 
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System Solution 

 Compiler creates interfaces to external and internal memory 

 Automatically timing closed 
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Fractal Video Kernel 
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__kernel void compute_fractal_code(  short* currImage, short* codeBook, ...) { 

  short myImage[16], centry[16]; 

 

  int average = 0; 

  int imageOffset = get_global_id(0) * 16; 

  for (each pixel i in region) {  //loop is unrolled 

    short val = currImage[imageOffset+i]; 

    average += val; 

    myImage[i] = val; } 

  average >>= 4; //divide by 16 to get average 

  for (each pixel in region) //loop is unrolled 

    myImage[i] -= average;  

 

  ushort best_sad = 16 * 256 * 2;  

  int bestCodebookEntry = -1, bestScale = -1; 

  for (each codebook entry icode ) { 

       for (i=0; i<16; i++) //loop is unrolled 

            centry[i] = codeBook[icode*16+i]; 

       for (each scale factor sFac) { 

            ushort sad = 0; 

            for (i=0; i<16; i++) //loop is unrolled 

               sad += abs(sFac * centry[i] - myImage[i]); 

            if (sad < best_sad) { 

               best_sad = sad;  

               bestCodebookEntry = icode; 

               bestScale = sFac; 

}}} 



FPGA Results 

 Used Stratix IV and V FPGAs 
 Easy to retarget the OpenCL code; no code change required 

 Because of pipeline parallelism, performance increases with 

more copies of pipeline 
 Control this with loop unrolling  

 

 

 

 

 

 

 

 Fixed-point computations improve performance significantly 
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Summary 

 Performed platform evaluation using OpenCL 

 Implemented fractal encoding and map it efficiently for multi-core 

CPUs, GPUs, and FPGAs 

 

 

 

 

 

 Showed that core computation can be 3x faster on FPGA vs. GPU 

with 8x less power 

 Using a High Level Synthesis tool can dramatically reduce the time 

required for FPGA implementation 
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Platform Kernel 

Runtime 

FPS Board 

Power 

Multi-Core CPU (Intel Xeon W3690) 196.1 4.6 130 W 

GPU (NVIDIA Fermi 2075) 5.17 53.1 215 W 

FPGA (Altera Stratix V 5SGXA7) 1.72 74.4 25 W 



Thank You 
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Objective  

 A programming model study using OpenCL 

 Implement fractal compression in OpenCL 
 An video encoding algorithm based on iterated function systems (IFS) 

 Code is ported to and optimized for multi-core CPUs, 

GPUs and FPGAs 

 Introduce Altera’s OpenCL-to-FPGA Compiler 

 Performance comparisons 
 Between multi-core CPUs, GPUs, and FPGAs 

 Between OpenCL and hand-coded RTL implementations 
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Fractal Video Compression 

 Encode new frames using the codebook of the original frame 

 Cross-coding experiment 
 Use the codebook of one image to encode another 

 

 

 

 

 

 

 

 
 

 Show an average loss in PSNR of only ~1dB 
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  Aerial Airplane Balloon Girl Lenna Mandrill Parrots Pepper Sailboat Couple Milkdrop 

Aerial 27.5 25.7 34.1 30.8 27.6 24.6 27.9 26.5 27.1 30.5 30.0 

Airplane 27.0 27.3 34.0 31.0 28.2 24.3 28.5 27.1 27.4 30.3 31.7 

Balloon 26.9 25.1 34.9 30.2 27.4 24.1 27.5 25.8 26.5 30.3 29.6 

Girl 27.0 25.1 34.6 32.1 28.0 24.2 27.6 26.4 26.9 30.9 29.7 

Lenna 26.9 26.0 34.6 31.3 29.5 24.3 28.4 27.1 27.2 31.1 31.1 

Mandrill 27.0 25.4 34.0 30.7 27.8 24.6 27.8 26.6 26.8 30.9 29.6 

Parrots 27.1 26.3 34.8 31.2 28.5 24.2 28.7 27.0 27.3 30.7 30.9 

Pepper 27.4 26.6 35.0 31.9 29.1 24.6 28.7 28.7 28.3 31.8 31.6 

Sailboat 27.5 27.0 34.8 31.6 28.5 24.7 28.7 27.5 28.3 31.3 31.5 

couple 27.1 25.1 34.7 30.9 27.7 24.3 27.6 26.6 26.8 31.6 29.8 

milkdrop 26.9 25.8 34.1 31.0 27.5 23.9 28.0 26.3 26.7 30.1 31.1 
Average  

(dB) 26.9 25.1 34.0 30.2 27.4 23.9 27.5 25.8 26.5 30.1 29.6 

Loss (dB) -0.6 -2.3 -1.0 -1.9 -2.1 -0.7 -1.2 -2.9 -1.8 -1.5 -1.5 



Hand-coded RTL Implementation 

 Onchip frame buffer and codebook 
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OpenCL vs. Handcoded  

 Core computation replicated for each scale factor 

 

 

 

 

 

 

 OpenCL design flow greatly simplifies FPGA implementation 
 Automates external interfacing such as DDR and PCIe 
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Handcoded OpenCL SDK 

Frame buffer On-chip memory Global memory 

Codebook On-chip memory Global memory 

Unroll 4x 24x 

Development Time >1 month Hours 


