
Fractal Video Compression in OpenCL: 

An Evaluation of CPUs, GPUs, and FPGAs as 

Acceleration Platforms 

Doris Chen, Deshanand Singh 

Jan 24th, 2013 



Platform Evaluation Challenges 

 Conducting a fair platform evaluation is difficult 
 Platforms have different programming models 

 CPUs – C/C++ 

 GPU - vendor-specific languages (CUDA) 

 FPGAs – RTL languages (Verilog, VHDL) 

 Hard to predict behaviour ahead of time without actual 

implementation 

 Designers often select the platform based on device specs 
 Need to consider the actual functionality needed 
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OpenCL Standard 

 A platform-independent standard  
 Target Host + Accelerator applications  

 Data parallelism is explicitly specified 
 Host – manages data and control flow 

 Kernel – highly parallel section to be accelerated (multi-core CPU, GPU, or FPGA) 

 Same code can be easily targeted to different platforms for 

performance comparison 
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Accelerator Accelerator Accelerator Processor 

__kernel void 

sum(__global float *a, 

    __global float *b, 

    __global float *y)  { 

  int gid = get_global_id(0); 

  y[gid] = a[gid] + b[gid]; 

} 

main() { 

   read_data( … ); 

   manipulate( … ); 

   clEnqueueWriteBuffer( … ); 

   clEnqueueNDRange(…,sum,…); 

   clEnqueueReadBuffer( … ); 

   display_result( … ); 

} 



Objective  

 A programming model study using OpenCL 

 Implement fractal compression in OpenCL 
 An video encoding algorithm 

 Code is ported to and optimized for multi-core CPUs, GPUs and 

FPGAs 
 Introduce Altera’s OpenCL-to-FPGA Compiler 

 Compare performance between multi-core CPUs, GPUs, and FPGAs 

4 



Iterated Functions for Fractal Compression 

 Based on the theory of iterated function systems (IFS) 

 Consider a pixel value of 4 
 Can be expressed as the recurrence relation: 

 

 Can be shown that the relation resolves to 4 regardless of initial value 

 We can represent the pixel with 2 values {0.5, 2} 
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Image Compression 

 Express a N x N image as a 1-D vector 

 

 Find transformation matrix A, and vector C such that  

 

 We would recursively apply this to arrive at the image 
 Do not need the original image 

 Regenerate the image from random data with A and C 

 Not quite useful when performing image compression! 
 Instead of N2 pixel values, have a N2 x N2  matrix and a N2 vector !! 
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Fractal Image Compression 

 Creation of a codebook 

 Take 8x8 regions of the image, and compress into 4x4 
 Each 4x4 pixel is an average of a 2x2 region 

 Generates a library of codebook images 
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Using the Codebook  

 Codebook library help generate matrix A and vector C 

 For each region Ri, find the codebook entry that best minimizes error 
 After applying a scale factor si, and an offset oi 

 Compute the summation of absolute differences (SAD) 
 Compare Ri with all Dj in the codebook 
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 After finding the best approximation for each Ri, we may have a set of 

equations such as the following: 

Using the Codebook 
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Fractal Code 

 Each Ri can be expressed as: 

 

 Transmit 3 values for each 4x4 region 
 Best matching codebook entry j, scale factor si, and offset oi 

 This forms the fractal code for the image 
 Compression achieved due to transmission of a small number of coefficients 
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Image Encoding / Decoding 
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Iteration 0 

Decoding Example 
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Original Image Iteration 1 Iteration 2 Iteration 3 

SNR = 24.999 SNR = 27.4463 SNR = 29.4954 dB 



 Encode new frames using the codebook of the original frame 

 Cross-coding experiment showed average PSNR loss of only ~1dB 
 Use the codebook of one image to encode another 

 Sequential frames are generally similar in nature (less diverse than random images) 

 

Fractal Video Encoding General Approach 
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Optimized Kernel Code 
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__kernel void compute_fractal_code(  short* currImage, short* codeBook, ...) { 

  short myImage[16], centry[16]; 

 

  int average = 0; 

  int imageOffset = get_global_id(0) * 16; 

  for (each pixel i in region) {  //loop is unrolled 

    short val = currImage[imageOffset+i]; 

    average += val; 

    myImage[i] = val; } 

  average >>= 4; //divide by 16 to get average 

  for (each pixel in region) //loop is unrolled 

    myImage[i] -= average;  

 

  ushort best_sad = 16 * 256 * 2;  

  int bestCodebookEntry = -1, bestScale = -1; 

  for (each codebook entry icode ) { 

       for (i=0; i<16; i++) //loop is unrolled 

            centry[i] = codeBook[icode*16+i]; 

       for (each scale factor sFac) { 

            ushort sad = 0; 

            for (i=0; i<16; i++) //loop is unrolled 

               sad += abs(sFac * centry[i] - myImage[i]); 

            if (sad < best_sad) { 

               best_sad = sad;  

               bestCodebookEntry = icode; 

               bestScale = sFac; 

}}} 

Compare against all 

codebook entries 

Compute average 

(offset) 

7 scale factors  
{1.0, 0.75, 0.5, 0.25, -0.25, -0.5, -0.75, -1.0} 



Platforms Evaluated 

 Used the latest platforms available at time of writing 

 

 

 

 Used publicly available video sequences 
 Full-color 704x576 videos 

 SNRs > 30dB indicate a high quality result 

 Can achieve ~9.7x compression for Y plane  

 Higher for Cr and Cb planes 
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Multi-Core CPU Results 

 Intel Xeon W3690 
 6 cores running at 3.46GHz, plus hyperthreading 

 12 MB on-chip cache 

 Used Intel OpenCL SDK 
 No communication overhead since kernels run on same device as host 

 Kernel time defined as the average kernel runtime per frame processed 

 

 

 

 

 8x improvement when parallelized 
 Run 1 thread per 4x4 region  (no inter-thread communication) 

 Fixed-point implementation actually hurts performance 
 The number of instructions increased 
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GPU Architecture 

 Highly optimized processors known for graphics computation 

 Designed to maximize application throughput 
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Multiprocessor 

 High memory bandwidth (144GB/s) 

 An array of compute units  

- Streaming Multiprocessor 

 Process tens of thousands of threads in 

parallel 

- Hardware support for context switching 

between groups of threads 

 Programmed using CUDA or NVIDIA 

OpenCL SDK 

 

 



GPU Results 

 Fractal encoding algorithm seems to be a good fit for GPU 
 Works on small independent regions at a time (1 thread per 4x4 region) 

 GPU can launch thousands of threads in parallel for each region 

 Low demand for shared memory or local registers 

 Specify workgroups (W) due to GPU hierarchy 
 A group of threads that cooperate to solve a sub-problem 

 All threads in the workgroup run on the same SMP (CUDA core) 

 Tradeoff in workgroup size 
 More threads  Allows for a greater ability for the GPU to hide high-latency operations 

 More threads  Greater demand on shared resources (eg. Registers) 
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FPGAs as Accelerators 

 An array of programmable logic connected with a grid of 

programmable routing wires 

 Flexible, able to implement a customized datapath 

 Much lower power in comparison to CPUs and GPUs 

 Memory bandwidth generally  

     much lower 
 Depends on board design 

 Traditionally implemented using 

     hardware description languages 
 Intimate knowledge of device architecture 

 and cycle accuracy required 

 Can be a challenge for HPC adoption 
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Altera OpenCL SDK 

 A high-level synthesis tool that compiles OpenCL code to HDL for 

FPGA implementation 

 

 Translates the kernel to hardware by creating a circuit to 

implement each operation 
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__kernel void 
sum(__global const float *a, 
__global const float *b, 
__global float *answer) { 
  int xid = get_global_id(0); 
  answer[xid] = a[xid] + b[xid]; 
} 



 Run threads in parallel using the same hardware 

 Each parallel thread is associated with an ID 
 Indicates the subset of data it operates on 

 

Pipeline Parallelism 
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System Solution 

 Compiler creates interfaces to external and internal memory 

 Automatically timing closed 
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Fractal Video Kernel 
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__kernel void compute_fractal_code(  short* currImage, short* codeBook, ...) { 

  short myImage[16], centry[16]; 

 

  int average = 0; 

  int imageOffset = get_global_id(0) * 16; 

  for (each pixel i in region) {  //loop is unrolled 

    short val = currImage[imageOffset+i]; 

    average += val; 

    myImage[i] = val; } 

  average >>= 4; //divide by 16 to get average 

  for (each pixel in region) //loop is unrolled 

    myImage[i] -= average;  

 

  ushort best_sad = 16 * 256 * 2;  

  int bestCodebookEntry = -1, bestScale = -1; 

  for (each codebook entry icode ) { 

       for (i=0; i<16; i++) //loop is unrolled 

            centry[i] = codeBook[icode*16+i]; 

       for (each scale factor sFac) { 

            ushort sad = 0; 

            for (i=0; i<16; i++) //loop is unrolled 

               sad += abs(sFac * centry[i] - myImage[i]); 

            if (sad < best_sad) { 

               best_sad = sad;  

               bestCodebookEntry = icode; 

               bestScale = sFac; 

}}} 



FPGA Results 

 Used Stratix IV and V FPGAs 
 Easy to retarget the OpenCL code; no code change required 

 Because of pipeline parallelism, performance increases with 

more copies of pipeline 
 Control this with loop unrolling  

 

 

 

 

 

 

 

 Fixed-point computations improve performance significantly 
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Summary 

 Performed platform evaluation using OpenCL 

 Implemented fractal encoding and map it efficiently for multi-core 

CPUs, GPUs, and FPGAs 

 

 

 

 

 

 Showed that core computation can be 3x faster on FPGA vs. GPU 

with 8x less power 

 Using a High Level Synthesis tool can dramatically reduce the time 

required for FPGA implementation 
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Platform Kernel 

Runtime 

FPS Board 

Power 

Multi-Core CPU (Intel Xeon W3690) 196.1 4.6 130 W 

GPU (NVIDIA Fermi 2075) 5.17 53.1 215 W 

FPGA (Altera Stratix V 5SGXA7) 1.72 74.4 25 W 



Thank You 
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Objective  

 A programming model study using OpenCL 

 Implement fractal compression in OpenCL 
 An video encoding algorithm based on iterated function systems (IFS) 

 Code is ported to and optimized for multi-core CPUs, 

GPUs and FPGAs 

 Introduce Altera’s OpenCL-to-FPGA Compiler 

 Performance comparisons 
 Between multi-core CPUs, GPUs, and FPGAs 

 Between OpenCL and hand-coded RTL implementations 
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Fractal Video Compression 

 Encode new frames using the codebook of the original frame 

 Cross-coding experiment 
 Use the codebook of one image to encode another 

 

 

 

 

 

 

 

 
 

 Show an average loss in PSNR of only ~1dB 
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  Aerial Airplane Balloon Girl Lenna Mandrill Parrots Pepper Sailboat Couple Milkdrop 

Aerial 27.5 25.7 34.1 30.8 27.6 24.6 27.9 26.5 27.1 30.5 30.0 

Airplane 27.0 27.3 34.0 31.0 28.2 24.3 28.5 27.1 27.4 30.3 31.7 

Balloon 26.9 25.1 34.9 30.2 27.4 24.1 27.5 25.8 26.5 30.3 29.6 

Girl 27.0 25.1 34.6 32.1 28.0 24.2 27.6 26.4 26.9 30.9 29.7 

Lenna 26.9 26.0 34.6 31.3 29.5 24.3 28.4 27.1 27.2 31.1 31.1 

Mandrill 27.0 25.4 34.0 30.7 27.8 24.6 27.8 26.6 26.8 30.9 29.6 

Parrots 27.1 26.3 34.8 31.2 28.5 24.2 28.7 27.0 27.3 30.7 30.9 

Pepper 27.4 26.6 35.0 31.9 29.1 24.6 28.7 28.7 28.3 31.8 31.6 

Sailboat 27.5 27.0 34.8 31.6 28.5 24.7 28.7 27.5 28.3 31.3 31.5 

couple 27.1 25.1 34.7 30.9 27.7 24.3 27.6 26.6 26.8 31.6 29.8 

milkdrop 26.9 25.8 34.1 31.0 27.5 23.9 28.0 26.3 26.7 30.1 31.1 
Average  

(dB) 26.9 25.1 34.0 30.2 27.4 23.9 27.5 25.8 26.5 30.1 29.6 

Loss (dB) -0.6 -2.3 -1.0 -1.9 -2.1 -0.7 -1.2 -2.9 -1.8 -1.5 -1.5 



Hand-coded RTL Implementation 

 Onchip frame buffer and codebook 
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OpenCL vs. Handcoded  

 Core computation replicated for each scale factor 

 

 

 

 

 

 

 OpenCL design flow greatly simplifies FPGA implementation 
 Automates external interfacing such as DDR and PCIe 
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Handcoded OpenCL SDK 

Frame buffer On-chip memory Global memory 

Codebook On-chip memory Global memory 

Unroll 4x 24x 

Development Time >1 month Hours 


