Optimization of Overdrive Signoff

Tuck-Boon Chan, Andrew B. Kahng, <u>Jiajia Li</u> and Siddhartha Nath VLSI CAD LABORATORY, UC San Diego

UC San Diego / VLSI CAD Laboratory

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

Motivation

Mode = (voltage, frequency) pair

- Multi-mode operation requires multi-mode signoff
 Example: nominal mode and overdrive mode
- Selection of signoff modes affects area, power
 Our Goal: Optimally select signoff modes
 Improve performance, power, or area
 Reduce overdesign

Fix Nominal Mode

- The average power of circuits signed off with different overdrive modes
- Average power = $r \times P_{OD} + (1-r) \times P_{nom}$
 - r is the duty cycle of overdrive mode

Fix Nominal Mode + OD Frequency

- Power of circuits signed off with different overdrive voltages
- Low signoff voltage \Rightarrow large # of buffers
- High signoff voltage \Rightarrow high dynamic power

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

Tradeoff between Frequency & Voltage

- Voltage scaling ⇒ frequency vs. voltage tradeoff curves
- Maximum frequency increases essentially linearly with supply voltage

We approximate such curves as straight lines

Design Space for Signoff

- Design space for signoff is the set of all possible combinations of signoff modes
- Example: design space for two-mode signoff is all combinations of two points in the plane

Design Cone

- Design cone is the union of all the feasible operating modes (frequency, voltage pairs) for circuits signed off at one mode
- Determined by tradeoff between frequency and voltage (slopes of frequency vs. voltage tradeoffs)
- Indicates the solution space for signoff mode selection

- Slope of frequency vs. voltage tradeoff (MHz/V) mainly determined by threshold voltages
- Gate type, fanout have little influence

V _T	Fanout	Gate Types					
		INV	NAND	NOR			
LVT	4	887	800	936			
LVT	16	776	787	877			
HVT	4	1167	1176	1260			
HVT	16	1126	1217	1246			

■ Wire resistance also has little influence - 10,000X change in resistance $\Rightarrow <2\%$ change in slopes

- Slope of frequency vs. voltage tradeoff (MHz/V) mainly determined by threshold voltages
- Gate type, fanout have little influence

V _T		Gate Types					
	Fanout	INV	NAND	NOR			
LVT	4	887	800	936			
LVT	16	776	787	877			
HVT	4	1167	1176	1260			
HVT	16	1126	1217	1246			

Wire resistance also has little influence

- 10,000X change in resistance \Rightarrow <2% change in slopes

- Slope of frequency vs. voltage tradeoff (MHz/V) mainly determined by threshold voltages
- Gate type, fanout have little influence

V _T	Fanaut	Gate Types					
	Fanout	INV	NAND	NOR			
LVT	4	887	800	936			
LVT	16	776	787	877			
HVT	4	1167	1176	1260 '			
HVT	16	1126	1217	1246			

• Wire resistance also has little influence - 10,000X change in resistance $\Rightarrow <2\%$ change in slopes

- Slope of frequency vs. voltage tradeoff (MHz/V) mainly determined by threshold voltages
- Gate type, fanout have little influence

V _T	Fanout	Gate Types					
		INV	NAND	NOR			
LVT	4	887	800	936			
LVT	16	776	787	877			
HVT	4	1167	1176	1260			
HVT	16	1126	1217	1246			

• Wire resistance also has little influence - 10,000X change in resistance \Rightarrow <2% change in slopes

- Slope of frequency vs. voltage tradeoff (MHz/V) mainly determined by threshold voltages
- Gate type, fanout have little influence

V _T	Fanaut	Gate Types				
	Fanout	INV	NAND	NOR		
LVT	4	887	800	936		
LVT	16	776	787	877		
HVT	4	1167	1176	1260		
HVT	16	1126	1217	1246		

Wire resistance also has little influence
 − 10,000X change in resistance ⇒ <2% change in slopes

- Slope of frequency vs. voltage tradeoff (MHz/V) mainly determined by threshold voltages
 - We use inverter chains with LVT- and HVT-only cells to estimate the boundary of design cone

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

Dominance

One mode is outside of the design cone of the other \Rightarrow positive / negative timing slacks

Dominance

One mode is outside of the design cone of the other other positive / negative timing slacks

■ M_2 shows positive timing slacks w.r.t. M_1 $\Rightarrow M_1$ is the dominant mode

Dominance

One mode is outside of the design cone of the other other positive / negative timing slacks

- M_2 shows positive timing slacks w.r.t. M_1 $\Rightarrow M_1$ is the dominant mode
- Positive timing slacks indicate overdesign

Mode A is the dominant mode
 LVT > Shift mode B to B'
 ⇒ reduce voltage and power

 \Rightarrow retain same performance

Equivalent Dominance

When two modes exhibit equivalent dominance

 No one is dominated by the other
 They are in each other's design cone

Mode A and B exhibit equivalent dominance

Voltage

Multi-mode signoff at modes which do not exhibit equivalent dominance leads to overdesign

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

The 3+1 Problems

Overdrive signoff has four parameters

 Nominal mode: f_{nom}, V_{nom}
 Overdrive mode: f_{OD}, V_{OD}

Given f_{nom}, f_{OD} and V_{nom}, search for V_{OD}
 Given f_{nom}, f_{OD} and V_{OD}, search for V_{nom}
 ⇒ Minimize power

Given V_{nom}, V_{OD} and f_{nom}, search for f_{OD}
 Given V_{nom}, V_{OD} and f_{OD}, search for f_{nom}
 ⇒ Maximize performance under power constraints

The 2+2 Problems

Overdrive signoff needs four parameters

 Nominal mode: f_{nom}, V_{nom}
 Overdrive mode: f_{OD}, V_{OD}

 FIND_OD: given (f_{nom}, V_{nom}), search for (f_{OD}, V_{OD})
 ⇒ maximize f_{OD}
 s.t. average and peak power satisfy constraints

■ FIND_VOLT: given f_{nom} and f_{OD} , search for V_{nom} and V_{OD} \Rightarrow minimize average power

Reduction from 2+2 to 3+1

- 2+2 problems can reduce to 3+1 problems by sweeping one unknown parameter
- Reduction of FIND_OD problem

Reduction of FIND_VOLT problem

Methodologies for 3+1 Problems

- Given f_{nom} , f_{OD} and V_{nom} , search for V_{OD}
- Given f_{nom} , f_{OD} and V_{OD} , search for V_{nom}
 - \Rightarrow Minimize power
- Exhaustive search on the solution space defined by given parameters and design cone

Methodologies for 3+1 Problems

Given V_{nom}, V_{OD} and f_{nom}, search for f_{OD}
 Given V_{nom}, V_{OD} and f_{OD}, search for f_{nom}
 ⇒ Maximize performance under power constraints
 Scale frequency along the solution space until the power constraint is hit

Common Design Practice Today: Signoff & Scale (FIND_OD)

- Sign off circuit at nominal mode
- Scale the voltage to increase frequency until the power constraint is hit
- Simplifies the design process, but ignores second (OD) mode in the signoff

Proposed Flow (FIND_OD)

 Signoff & scale at nominal mode to estimate the maximum overdrive frequency (f_{est})

Proposed Flow (FIND_OD)

- Signoff & scale at nominal mode to estimate the maximum overdrive frequency (f_{est})
- Determine several approximate overdrive modes based on f_{est} and the design cone

Proposed Flow (FIND_OD)

- Signoff & scale at nominal mode to estimate the maximum overdrive frequency (f_{est})
- Determine several approximate overdrive modes based on f_{est} and the design cone
- Implement voltage scaling on each approximate overdrive mode until hit the power constraint

Proposed Flow (FIND_VOLT)

Exhaustive search for $V_{nom} \Rightarrow$ minimum power at nominal mode

Proposed Flow (FIND_VOLT)

- Exhaustive search for V_{nom} \Rightarrow minimum power at nominal mode
- Estimate the design cone of selected mode

Proposed Flow (FIND_VOLT)

- Exhaustive search for V_{nom} \Rightarrow minimum power at nominal mode
- Estimate the design cone of selected mode
- Exhaustive search for V_{OD} within the design cone \Rightarrow minimum average power

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

Experimental Setup

- Design: AES (~15K instances) from OpenCores
- Technology: TSMC 65nm
- Comparison
 - Signoff&Scale applies traditional signoff and scale methodology
 - Proposed implements our proposed flow
 - Exhaustive Search uses exhaustive search

Experimental Results (FIND_OD)

Proposed flow improves performance by 7%

Flow requires about 22% runtime compared to exhaustive search with similar area (-0.01%), power (+3%) and performance (-0.5%)

	Signoff & Scale		Proposed Flow		Exhaustive Search		
f _{op} (MHz)		711	764		764 768		
V _{OD} (V)		1.14	1.14		1.14 1.15		
Area (µm ²)		31029		32016		32020	
P _{OD} (mW)		49.13		49.14		49.76	
P _{avg} (mW)		21.73		20.90		20.24	
# P&R runs		1		7		32	

Nominal mode: $f_{nom} = 500MHz V_{nom} = 0.9V$

Experimental Results (FIND_VOLT)

 Flow requires about 27% runtime compared to exhaustive search with similar area (-0.01%), power (+8%)

	Proposed Flow		Exhaustive Search		
V _{nom} (V)	0.92		0.91		
V _{OD} (V)		1.02	1.01		
Area (µm ²)		30948	30960		
P _{OD} (mW)		41.08	30.38		
P _{avg} (mW)		22.28	20.61		
# P&R runs		9	33		

 $f_{nom} = 500MHz / f_{OD} = 600MHz$

Signoff & Scale is not applicable to FIND_VOLT

Recent Updates

- Problem: too many SP&R runs
- Approach:
 - Use power models for global optimization
 - Avoid implementing circuits at each mode
- Construct power model adaptively
- Small constant # runs is enough \Rightarrow scalable

Global Optimization Flow

Iteratively sample and refine the power models

Performance of the proposed global optimization

Outline

Motivation Design Cone Dominance of Modes Problems and Methodologies Experimental Setup and Results Conclusions and Ongoing Works

Conclusions & Ongoing Works

Conclusions

- Study the problem of signoff mode selection
- Propose the concept of design cone
- Show that mutual equivalent dominance is required for signoff mode selection to avoid overdesign
- Propose methodologies for signoff mode selection

Ongoing Works

- More accurate estimation of design cone
- Consider additional tradeoffs of design metrics such as area, reliability

Acknowledgments

Work supported by IMPACT, SRC, NSF, Qualcomm and Samsung **Thank You!**