

Session 4C

Power Optimization for Application-Specific 3D Network-on-Chip with Multiple Supply Voltages

Kan Wang, Sheqin Dong Tsinghua University, Beijing, P.R.China E-mail: wangkan09@mails.thu.edu.cn

Introduction

MSV-driven Layer Assignment

3D NoC Synthesis

Introduction

MSV-driven Layer Assignment

3D NoC Synthesis

Challenge in Moore's law

Moore's law is facing huge challenges

Power Consumption

- Waste power
- Thermal problem

- Three-dimensional (3D) integration
 - Decreasing wire delay, increasing integration density and improving performance
 - Faced with heat dissipation and temperature problem

- Network-on-chip (NoC)
 - Brings networks into chip
 - Greatly reduce communication Cost

Power Consumption

- Multiple Supple Voltage (MSV)
 - Partitions the circuit into domains of different voltage levels (Voltage Island)
 - Reducing power by assigning lower voltage to some blocks on chip

<u>– Many MSV-dr</u>iv

There is still no work on MSV-driven applicationspecific 3D NoC design

- Communication power can be optimized through a good NoC synthesis
- Many designers proposed 3D NoC synthesis methods[ICCD'08, TCAD'10,ASPDAC'10]
- However, none of them considered the layer assignment problem, which can greatly affects the vertical communication power
- Besides, few of previous work thought of the usage of MSV technology on core power optimization

- In this paper, a MSV-driven framework is proposed for application-specific 3D NoC
 - A unified ILP modeling method is proposed for taking into account both layer assignment and voltage level assignment
 - 2. 3D NoC synthesis is proposed with consideration of inter-layer communication optimization
 - 3. 3D NoC floorplanning with network component assignment considered is presented for communication power improvement.

Introduction

MSV-driven Layer Assignment

3D NoC Synthesis

Overall Design Flow

- Given:
 - (1) N cores with information of width and height
 - (2) communication graph
 - (3) m legal voltage levels
 - (4) the lowest allowable voltage table of each core and the corresponding power consumptions at different voltage levels
 - (5) the number of layers n The output is a generated
- The objective is:

legal 3D layout

 Assigns N cores to n layers with a voltage assignment for each core, assigns network components on each layer, and determines the physical position of each core and component

- How to solve MLA (m, n)?
 - -m = n: Single voltage level in each layer
 - -m > n: Single voltage level in multi-layers
 - -m < n: Multi-voltage levels in each layer

The case of *m*= *n*

- m > n: more than one voltage island on each layer
 - Which voltages on each layer?
 - Voltage assignment on 2D NoC
 - Mapping 3D cores onto 2D NoC
 - Do *m* voltage assignment on 2D NoC
 - Compare total cost of different combination
 - Modified Core communication graph
 - Communication cost and connection cost to separate the cores in the same voltage island
 - Area balanced partition

- As a result of area-balanced constraints, the ILP formulation is exact but timeconsuming
 - It takes thousands of seconds to solve even small cases
- An ILP variable pruning method is proposed inspired by that
 - If core *i* connect few other cores or the communication cost generated by core *i* is small, then core *i* can be assigned to the lowest allowable voltage level

Variable Pruning for ILP

Introduction

MSV-driven Layer Assignment

3D NoC Synthesis

- 3D NoC is a 3D network including innerlayer networks and inter-layer interconnection
 - Inner-layer NoC synthesis [DAC'09]
 - Inter-layer TSV planning

 Network components are integrated into floorplanning and the positions can be improved through floorplanning process

 A post-floorplan dead-space re-allocation and LP based optimization algorithm is proposed to further improve comp Line-scan method

 $comCost_{i,k} = \sum_{j=0}^{n} Com_{kj} * length_{ij} + \sum_{t=0}^{n} Com_{kt} * length_{it}$

Function DS_Allocation: Method : orderDummyCoresByComs(); //order Switches by communication amount For (i between 1 and Ns){ //Search for all dead-space for each switch orderDS(i); //order all dead-space by weighted wire length For (j between 1 and Nds) { if (enoughSpace(i, DSj)==True){//There is enough space for Switch i allocate(i, j); //Allocate core I to dead-space j updateSpace(j)://update the space by reduce the size of switch i }} Network flow based algorithm is used for NI

Post-Floorplan process

Dead-space Generation

Output Floorplan

Introduction

MSV-driven Layer Assignment

3D NoC Synthesis

Table 1: Results of MSV-driven Layer Assignment Algorithm

Benchmark L# V# E#	ILP Inter-layer Run	Area Balanced M Core Inter-layer	Method Run	Heuristic ILP Core Inter Ayer Run			
Pure ILP solving without any strategy	Com timo(s) 44 79 78 78 78 76 76 76 76 76 76 76 76 76 76	alanced for only cost	The proposed method with ILP variable pruning				
D_{-76} $\begin{array}{c ccccccccccccccccccccccccccccccccccc$			0.01	94.4 104.1	81.4 138.6	1.75 63.0	
	>3000 1 1	149.7 151.6	0.01	101.8 0.998	144.9 1.062	<u>95.4</u> 0.018	
		1 1	1	0.664	1.098	-	

- Compared to ILP formulation, the proposed algorithm can save time greatly by 98.2% with only 6% more power
- Compared to the partition method, the proposed method can improve core power by 33.6% with only 9.8% increase on communication power, which achieves good trade-off between core power and communication power.

- Inter-layer communication can improve by about 35.8% with only 3.8% increase on inner-layer communication power, total power can be improved by 16.9%
- Global optimization can improve inter-layer communication by 60.8% and total power by 29.1%

			Tat	ole 3: E	nect of	IVISV-	3DNot)			
Benchmark	L#	V#	E#	MSV-2DNoC			MSV-PDNoC				
				Core	Com	Dead	Core	Com	rad	Run-time	
				Power	Power	Space	Power	Power	e	(s)	
	2	38	46	46.2	95.96	14.39	47.3	54.12		44.7	
D_38_tvopd	3	- 38	46		95.96	14.39	51.7	48.77	1	37.7	
96 14.39											
	MSV-2D NOC In .4 11.99						I he proposed				
D_36	.4 11.99										
	$GLSVLSI'12$ $\frac{11.99}{3}$ $3D-N_0C$										
					.8	19.56					
D_52	5.8 19.56										
	4	52	61	77.8	135.8	19.56					
D_76	2	76	92	92.4	264.1	23.83	94.4	139.1	23.83	65.1	
	3	76	92	92.4	264.1	23.83	104.1	144.9	13.36	60.3	
	4	76	92	92.4	264.1	23.83	101.8	119.2	18.65	82.2	
Ratio		-	-	1	1	1	1.098	0.523	1.034	-	

Introduction

MSV-driven Layer Assignment

3D NoC Synthesis

Experimental Results

Conclusion

- In this paper, a MSV-driven framework for application-specific 3D NoC design is proposed.
- Through a unified modeling method for simultaneously layer assignment and voltage assignment, 3D NoC synthesis and 3D floorplanning algorithm, the total power can be optimized.
- Compared to MSV-driven 2D NoC, the proposed method can improve total chip power greatly

Thanks

Email: wangkan09@mails.thu.edu.cn

35

Q&A

Overall Design Flow

The case of *m*= *n*

The case of *m*= *n*

Variable Pruning for ILP

 A post-floorplan dead-space re-allocation and LP based optimization algorithm is proposed to further improve comp Ns
Line-scan method

 $comCost_{i,k} = \sum_{j=0}^{1} Com_{kj} * length_{ij} + \sum_{t=0}^{1} Com_{kt} * length_{it}$

Function DS_Allocation: Method : orderDummyCoresByComs(); //order Switches by communication amount For (i between 1 and Ns){ //Search for all dead-space for each switch orderDS(i); //order all dead-space by weighted wire length For (j between 1 and Nds) { if (enoughSpace(i, DSj)==True){//There is enough space for Switch i allocate(i, j); //Allocate core I to dead-space j updateSpace(j);//update the space by reduce the size of switch i }} Network flow based algorithm is used for NI

insertion

- Environment:
 - Workstation: 3.0 GHz CPU, 4GB memory
 - Tool: *hmetis* for partition *and lp_solve* for ILP and LP solving
 - Benchmark: D_38_tvopd is used from [6] and D_36, D_52 and D_76 are derived from D_38_tvopd
 - The power model of network components and communication is evaluated according to [ASPDAC'10]