Processor and DRAM Integration by TSV-Based 3-D Stacking for Power-Aware SOCs

Shin-Shiun Chen, Chun-Kai Hsu, Hsiu-Chuan Shih, and Cheng-Wen Wu
Department of Electrical Engineering
National Tsing Hua University
Hsinchu, Taiwan

Jen-Chieh Yeh
Information and Communications Research Lab
Industrial Technology Research Institute
Hsinchu, Taiwan
Outline

• Introduction & Motivation
• 3D-PAC Architecture
• Sans-Cache DRAM Architecture
• Experimental Result
• Conclusion
3-D Stacking Technology

- **Wire-bonding technique**
 - For System-In-Package (SIP)
 - Pin-count limitation
- **Micro-bump technique**
 - Commonly used in face-to-face style stacking
- **Through Silicon Via (TSV)**
 - Etch through the bulk layer

Ref: W. Rhett Davis et al., “Demystifying 3D ICs: The Pros and Cons of Going Vertical”
Motivation

- Memory wall problem
 - Speed mismatch between processor and memory
 - Board level signal routing
 - Additional energy for complicated memory hierarchy

- Emerging 3-D stacking technology
 - Support heterogeneous integration
 - Reduce latency, power and energy
 - Mitigate the memory wall

- A new system design
 - Greatly reduce the system power and energy
 - While maintain the system performance
PAC DSP SOC & Virtual Platform

- 32-bit DSP developed by ITRI
 - With ARM9 CPU
 - Target on low power and energy
- Cycle-accurate model
 - 99% accuracy compared to measured data

Ref: I-Yao Chung et al., “PAC Duo SOC Performance Analysis with ESL Design Methodology”
Memory System Model

- Based on DRAMSim2 library
 - Read/write behavior
 * OSCI PV (Programmer’s View) level
 * DRAM status control
 * For the correctness of functionality
 - Latency and power calculation
 * According to the DRAM status
 * Add latency into response
3D-PAC Architecture

- Stack DRAM on the top of PAC DSP
 - No instruction cache and AXI SRAM
 - Without bus width limitation of AXI
 - No AXI bus delay
 - High data width
Memory System Analysis (1/2)

- Breakdown of cache miss latency
 - 1. Common bus penalty
 - 2. Controller penalty
 - 3. Board level routing delay
 - 4. DRAM latency
 - 5. Data transfer penalty
Memory System Analysis (2/2)

- Comparison between 2D-PAC and 3D-PAC
 - 3D-PAC greatly improves the latency
- Latency improvement \rightarrow power/energy reduction
Fast-Cycle RAM (FCRAM)

- A reference DRAM design
 - Small active row
 - Auto-precharge circuit
 - Pipeline scheme

Ref: Y. Sato et al., “Fast Cycle RAM (FCRAM): a 20-ns random row access, pipelined operating DRAM”
Sans-Cache DRAM (SCDRAM)

• A new DRAM interface
 – Simplify the memory hierarchy
 – Latency improvement \rightarrow power/energy reduction

• Features of SCDRAM
 – Send row and column address simultaneously
 – Reduce the active row size to 2K bits
 – Auto-precharge circuit
 – Wide I/O design with ping-pong buffer
 – Without data burst and Double Data Rate (DDR)
Small Page Size

- Reduce the active row size to 2K bits
 - Reduce power and access latency
 - Improve energy efficiency
Address Interface

- Eliminate address multiplexing
 - Send row and column address simultaneously
Wide I/O with Ping-Pong Buffer

- Simplify cache to a ping-pong buffer
 - Each bank has 512B size of buffer
- I/O bus width is the same to the row size
 - Remove data burst operation
Timing Model of SCDRAM

- Predicted from FCRAM
 - Eliminate address multiplexing (1 cycle)
 - Reduce the column decoder level (1 cycle)
- 1 cycle to enter/exit power-down mode
- The same refresh period as FCRAM
 - Parallel refresh (power constraint)
Observation of DRAM Power

- Important current parameters in standard
 - IDD0: the activation and precharge current
 - IDD4R/W: the burst read/write current

- Based on RAMBus power model
 - IDD0 is proportional to the page size
 - IDD4R/W is proportional to the I/O width
Power Model of SCDRAM

- Based on the equation from Micron spreadsheet

\[
I_{act} = IDD0 - \frac{IDD3N \cdot tRAS + IDD2N \cdot (tRC - tRAS)}{tRC}
\]

\[
I_{read} = IDD4R - IDD3N
\]

\[
I_{write} = IDD4W - IDD3N
\]

- Timing model (tRAS, tRC)
- Assume the same static current (IDD2N, IDD3N)
- Extrapolate the IDD0 and IDD4R/W
 - From the Micron DDR2 datasheet
 - IDD0 is proportional to the page size
 - IDD4R/W is proportional to the I/O width
Experimental Environment

- Power of cache and SRAM from CACTI6.5
- SCDRAM model
 - Developed with DRAMSim2 library
- The 3D-PAC virtual platform
Architecture Comparison (1/2)

- Four cases of architecture
 - 2D-PAC
 * Board level interconnect with DDR2
 - 2.5D-PAC
 * Stack DDR2 by interposer
 - 2.5D-PAC with 512B ping-pong buffer
 * Stack DDR2 by interposer
 * Simplify instruction cache to ping-pong buffer
 - 3D-PAC
 * Stack SCDRAM by TSV
 * Simplify instruction cache to ping-pong buffer

- Benchmark
 - H.264 decoder with QVGA bitstream
• The architecture effect
 – Change board level to Interposer
 * Slightly reduce the execution time and energy
 – Replace cache by ping-pong buffer
 * Significant degradation due to rise of miss rate
 – Stack SCDRAM with TSV
 * Greatly improve the power and energy
Bitstream Comparison

- High-motion-rate vs. low-motion-rate
 - 80% energy reduction in both cases
 - 16% performance improvement on high-motion
 - 23.5% performance improvement on low-motion
H.264 Encoder

- Also has 65% energy reduction
- Performance degradation
 - Computing intensive & high spatial data locality
 - The limitation of ping-pong buffer
 * Solved by increasing the buffer size
Conclusion

- A new memory hierarchy for PAC DSP SOC
 - DSP and DRAM integration by TSV stacking
 - Simplify cache to a ping-pong buffer
 - Proposed SCDRAM interface

- Greatly reduce the system power and energy, While maintain the system performance
 - For memory-intensive applications
 * 80% of energy reduction
 * With 23% of performance improvement
 - For computing-intensive applications
 * 65% of energy reduction
 * Slight performance degradation