Processor and DRAM Integration by TSV-Based 3-D Stacking for Power-Aware SOCs

Shin-Shiun Chen, Chun-Kai Hsu, Hsiu-Chuan Shih, and Cheng-Wen Wu Department of Electrical Engineering National Tsing Hua University Hsinchu, Taiwan

> Jen-Chieh Yeh Information and Communications Research Lab Industrial Technology Research Institute Hsinchu, Taiwan

Outline

- Introduction & Motivation
- 3D-PAC Architecture
- Sans-Cache DRAM Architecture
- Experimental Result
- Conclusion

3-D Stacking Technology

- Wire-bonding technique

 For System-In-Package (SIP)
 Pin-count limitation

 Micro-bump technique
 - Commonly used in face-to-face style stacking
- Through Silicon Via (TSV)
 - Etch through the bulk layer
 - wire bonding

micro-bump

Ref: W. Rhett Davis et al., "Demystifying 3D ICs: The Pros and Cons of Going Vertical"

Motivation

- Memory wall problem
 - Speed mismatch between processor and memory
 - Board level signal routing
 - Additional energy for complicated memory hierarchy
- Emerging 3-D stacking technology
 - Support heterogeneous integration
 - Reduce latency, power and energy
 - Mitigate the memory wall
- A new system design
 - Greatly reduce the system power and energy
 - While maintain the system performance

PAC DSP SOC & Virtual Platform

- 32-bit DSP developed by ITRI
 - With ARM9 CPU
 - Target on low power and energy
- Cycle-accurate model
 - -99% accuracy compared to measured data

Ref: I-Yao Chung et al., "PAC Duo SOC Performance Analysis with ESL Design Methodology"

Memory System Model

Based on DRAMSim2 library

- Read/write behavior
 - * OSCI PV (Programmer's View) level
 - * DRAM status control
 - * For the correctness of functionality
- Latency and power calculation
 - According to the DRAM status
 - * Add latency into response

3D-PAC Architecture

- Stack DRAM on the top of PAC DSP
 - No instruction cache and AXI SRAM
 - -Without bus width limitation of AXI
 - No AXI bus delay
 - High data width

Memory System Analysis (1/2)

- Breakdown of cache miss latency
 - -1. Common bus penalty
 - -2. Controller penalty
 - -3. Board level routing delay
 - -4. DRAM latency
 - -5. Data transfer penalty

Memory System Analysis (2/2)

- Comparison between 2D-PAC and 3D-PAC – 3D-PAC greatly improves the latency
- Latency improvement -> power/energy reduction

Fast-Cycle RAM (FCRAM)

• A reference DRAM design

- Small active row
- Auto-precharge circuit
- Pipeline scheme

Ref: Y. *Sato et al.*, "Fast Cycle RAM (FCRAM): a 20-ns random row access, pipelined operating DRAM"

Sans-Cache DRAM (SCDRAM)

- A new DRAM interface
 - Simplify the memory hierarchy
 - Latency improvement -> power/energy reduction
- Features of SCDRAM
 - Send row and column address simultaneously
 - Reduce the active row size to 2K bits
 - -Auto-precharge circuit
 - -Wide I/O design with ping-pong buffer
 - -Without data burst and Double Data Rate (DDR)

Small Page Size

Reduce the active row size to 2K bits
 – Reduce power and access latency
 – Improve energy efficiency

Address Interface

Eliminate address multiplexing Send row and column address simultaneously

Wide I/O with Ping-Pong Buffer

- Simplify cache to a ping-pong buffer
 Each bank has 512B size of buffer
- I/O bus width is the same to the row size
 Remove data burst operation

Timing Model of SCDRAM

Predicted from FCRAM

- Eliminate address multiplexing (1 cycle)
- Reduce the column decoder level (1 cycle)
- 1 cycle to enter/exit power-down mode
- The same refresh period as FCRAM – Parallel refresh (power constraint)

Observation of DRAM Power

- Important current parameters in standard
 IDD0: the activation and precharge current
 IDD4R/W: the burst read/write current
- Based on RAMBus power model

 IDD0 is proportional to the page size
 IDD4R/W is proportional to the I/O width

Power Model of SCDRAM

Based on the equation from Micron spreadsheet

$$\begin{split} I_{act} = IDD0 - \frac{IDD3N*tRAS + IDD2N*(tRC - tRAS)}{tRC} \\ I_{read} = IDD4R - IDD3N \\ I_{write} = IDD4W - IDD3N \end{split}$$

- Timing model (tRAS, tRC)
- Assume the same static current (IDD2N, IDD3N)
- Extrapolate the IDD0 and IDD4R/W
 - From the Micron DDR2 datasheet
 - IDD0 is proportional to the page size
 - IDD4R/W is proportional to the I/O width

Experimental Environment

- Power of cache and SRAM from CACTI6.5
- SCDRAM model
 Developed with DRAMSim2 library
- The 3D-PAC virtual platform

Architecture Comparison (1/2)

- Four cases of architecture
 - -2D-PAC
 - * Board level interconnect with DDR2
 - -2.5D-PAC
 - * Stack DDR2 by interposer
 - -2.5D-PAC with 512B ping-pong buffer
 - * Stack DDR2 by interposer
 - * Simplify instruction cache to ping-pong buffer
 - -3D-PAC
 - * Stack SCDRAM by TSV
 - * Simplify instruction cache to ping-pong buffer

Benchmark

– H.264 decoder with QVGA bitstream

Architecture Comparison (2/2)

The architecture effect

 Change board level to Interposer
 Slightly reduce the execution time and energy
 Replace cache by ping-pong buffer
 Significant degradation due to rise of miss rate
 Stack SCDRAM with TSV
 Greatly improve the power and energy

Bitstream Comparison

- High-motion-rate vs. low-motion-rate
 - -80% energy reduction in both cases
 - 16% performance improvement on high-motion
 - -23.5% performance improvement on low-motion

H.264 Encoder

- Also has 65% energy reduction
- Performance degradation

 Computing intensive & high spatial data locality
 The limitation of ping-pong buffer
 * Solved by increasing the buffer size

Conclusion

- A new memory hierarchy for PAC DSP SOC
 - DSP and DRAM integration by TSV stacking
 - Simplify cache to a ping-pong buffer
 - Proposed SCDRAM interface
- Greatly reduce the system power and energy, While maintain the system performance
 For memory-intensive applications

 80% of energy reduction
 With 23% of performance improvement

 For computing-intensive applications

 65% of energy reduction
 Slight performance degradation