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3-D Stacking Technology

e Wire-bonding technique

— For System-In-Package (SIP)

— Pin-count limitation
e Micro-bump technique

— Commonly used Iin face-to-face style stacking
e Through Silicon Via (TSV)

— Etch through the bulk layer

wire bonding micro-bump

Ref: W. Rhett Davis et al. , “Demystifying 3D ICs: The Pros and Cons of Going Vertical”



Motivation

e Memory wall problem
— Speed mismatch between processor and memory
— Board level signal routing

— Additional energy for complicated memory
hierarchy

e Emerging 3-D stacking technology
— Support heterogeneous integration

— Reduce latency, power and energy
— Mitigate the memory wall

e A new system design
— Greatly reduce the system power and energy
— While maintain the system performance



PAC DSP SOC & Virtual Platform

o 32-bit DSP developed by ITRI

— With ARM9 CPU
— Target on low power and energy

e Cycle-accurate model
—99% accuracy compared to measured data
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Memory System Model

Based on DRAMSImM2 library

— Read/write behavior
* OSCI PV (Programmer’s View) level
* DRAM status control
* For the correctness of functionality

— Latency and power calculation
* According to the DRAM status

* Add latency Into response
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3D-PAC Architecture

e Stack DRAM on the top of PAC DSP
— No instruction cache and AXI SRAM
— Without bus width limitation of AXI
— No AXI bus delay
— High data width

DRAM
Controller




Memory System Analysis (1/2)

e Breakdown of cache miss latency
— 1. Common bus penalty
— 2. Controller penalty
— 3. Board level routing delay
— 4. DRAM latency
— 5. Data transfer penalty




Memory System Analysis (2/2)

e Comparison between 2D-PAC and 3D-PAC
— 3D-PAC greatly improves the latency

e [atency improvement — power/energy reduction
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Fast-Cycle RAM (FCRAM)

o A reference DRAM design
— Small active row
— Auto-precharge circuit
— Pipeline scheme

Commodity DRAM
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Sans-Cache DRAM (SCDRAM)

e A new DRAM Iinterface
— Simplify the memory hierarchy
— Latency improvement — power/energy reduction

o Features of SCDRAM
— Send row and column address simultaneously
— Reduce the active row size to 2K bits
— Auto-precharge circuit
— Wide I/O design with ping-pong buffer
— Without data burst and Double Data Rate (DDR)
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Small Page Size

e Reduce the active row size to 2K bits
— Reduce power and access latency
— Improve energy efficiency
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Address Interface

e Eliminate address multiplexing
— Send row and column address simultaneously
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Wide I/O with Ping-Pong Buffer

o Simplify cache to a ping-pong buffer

— Each bank has 512B size of buffer

/O bus width Is the same to the row size
— Remove data burst operation
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Timing Model of SCDRAM

Predicted from FCRAM
— Eliminate address multiplexing (1 cycle)
— Reduce the column decoder level (1 cycle)

e 1 cycle to enter/exit power-down mode

The same refresh period as FCRAM
— Parallel refresh (power constraint)
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Observation of DRAM Power

e |mportant current parameters in standard

— IDDO: the activation and precharge current
— IDD4R/W: the burst read/write current

e Based on RAMBus power model

—IDDO is proportional to the page size
— IDD4R/W is proportional to the I/O width
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Power Model of SCDRAM

Based on the equation from Micron spreadsheet

;- o IPD3N *IRAS +1§£sz (tRC —IRAS)

[ .. =IDD4R—IDD3N

I, . =IDDAW —IDD3N

wrile

Timing model (tRAS, tRC)
Assume the same static current (IDD2N, IDD3N)

Extrapolate the IDDO and IDD4R/W

— From the Micron DDR2 datasheet
—IDDO is proportional to the page size

— IDD4R/W is proportional to the I/O width
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Experimental Environment
e Power of cache and SRAM from CACTI6.5

e SCDRAM model
— Developed with DRAMSIM2 library

e The 3D-PAC virtual platform

PRICDELR Application
Virtual Platform PP

Memory System
Trace File DRAM Spec. Configuration

DRAM Simulator

(with DRAMSIm2 library)

Power Timing
Information Information
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Architecture Comparison (1/2)

e Four cases of architecture
— 2D-PAC
* Board level interconnect with DDR2

—2.5D-PAC
* Stack DDR2 by interposer

—2.5D-PAC with 512B ping-pong buffer
* Stack DDR2 by interposer
* SImplify instruction cache to ping-pong buffer

— 3D-PAC
* Stack SCDRAM by TSV
* SImplify instruction cache to ping-pong buffer
e Benchmark
—H.264 decoder with QVGA bitstream

19



Architecture Comparison (2/2)

e The architecture effect
— Change board level to Interposer
* Slightly reduce the execution time and energy
— Replace cache by ping-pong buffer
* Significant degradation due to rise of miss rate

— Stack SCDRAM with TSV
* Greatly improve the power and energy
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Bitstream Comparison

High-motion-rate vs. low-motion-rate

— 80% energy reduction in both cases

— 16% performance improvement on high-motion
— 23.5% performance improvement on low-motion

H2D-PAC

high-motion-rate

Normalized to 2D-PAC
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H.264 Encoder

e Also has 65% energy reduction

e Performance degradation
— Computing intensive & high spatial data locality

— The limitation of ping-pong buffer
* Solved by increasing the buffer size
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Conclusion

e A new memory hierarchy for PAC DSP SOC
— DSP and DRAM integration by TSV stacking
— Simplify cache to a ping-pong buffer
— Proposed SCDRAM Interface

o Greatly reduce the system power and energy,
While maintain the system performance

— For memory-intensive applications
* 80% of energy reduction
* With 23% of performance improvement

— For computing-intensive applications
* 65% of energy reduction
* Slight performance degradation
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