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Outline
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• Clock network connects sequential elements (sinks)
• Skew-minimized buffered clock-tree synthesis plays an 

important role for synchronous circuits
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Clock Network Synthesis
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IR-Drop Effects on Clock Skew

• Buffer supply voltages could be different due to IR-drop
• If supply-voltage differences are not considered, the 

actual clock skew could be much worse than expected
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IR-Drop Effects on Buffer Latency

• IR-drop effects on power network change clock-buffer 
supply voltages → non-uniform supply voltages

• Experiments show that at least 0.2ps latency difference 
as the supply voltage changes with 0.01V for one buffer 
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Problem Formulation

• Instance: given a set of clock sinks, a power network, a set 
of power-analysis data (the most timing-critical IR-drop 
map), a slew-rate constraint, and a library of buffers

• Question: construct a buffered clock tree and minimize its 
skew, subject to no slew-rate violation

IR-drop maps under 
different workloads
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Conventional Clock Tree Synthesis

• Timing models (e.g., Elmore delay) are insufficiently 
accurate to assist in minimizing skew

• Synthesis running time becomes prohibitively long if 
simulations are embedded
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• Path configurations from root to sinks are similar
• Identical number of branches, identical wirelength, and 

identical inserted buffers hold at each tree level
⎯ Realization needs neither timing models nor simulations

Structural Optimization: Symmetrical Structure
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Motivation of Voltage Alignment

• Although clock trees are symmetrical, non-uniform 
supply voltages might affect skew

• Proposed solution: voltage alignment (minimizing 
voltage difference for the same tree level)
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Supply-Voltage-Aware Clock Tree Synthesis

• Plan branch numbers by factorization [Shih et al., DAC’10]

• Propose simultaneous tree construction and buffer 
insertion to realize voltage alignment
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• First build a topology that benefits voltage alignment
• Then place buffers where the used voltages are aligned

Bottom-Up Topology Generation
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Matching-Based Clustering Algorithm

• Minimum-Bottleneck Maximum Matching (MBMM) 
[Shih et al., ICCAD’10]
⎯ Perform optimizations on a graph

Vertex represents a sink or a subtree
Edge defines a cluster of subtrees
Edge cost is the wirelength of the defined cluster

⎯ Select edges to form perfect matching (i.e., each vertex must 
be matched)

Selected edges indicates the clustering
⎯ Update the graph iteratively by selecting and removing edges
⎯ Minimize the bottleneck cost (maximum cost) of selected edges
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Trade-Off: Voltage Alignment and Wirelength

• Longer wirelength implies that more positions and thus 
more voltages can be selected for buffers

• Voltage difference for some tree level might be reduced 
by snaking wires

13

0.97

1.0

0.98

0.98

supply
voltage

use longer 
wirelength
use longer 
wirelength



14

What If Directly Use MBMM for Clustering?

• New edge costs (for trade-off) can be modeled based 
on a combined cost of wirelength and voltage-alignment

• Only applying the model to MBMM has drawbacks in 
prior iterations
⎯ Extremely long wirelength is not acceptable so that involving 

voltage cost is not necessary but time-consuming
⎯ Wirelength is not stable so that voltage cost is imprecise
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Proposed Supply-Voltage-Aware Matching
• Wirelength upper bound of stage 2 is determined based on 

the required buffer number of stage 1

Construct initial 
perfect matching

Input
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Supply-Voltage-Aware Matching Example
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Voltage Alignment Cost Model

• Locate possible positions for buffers to identify 
corresponding candidate voltages: voltage interval

• Compute an expected voltage from all voltage intervals
• Define the cost as the mismatch between voltage 

intervals and the expected voltage
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Expected Voltage

• The expected value results in the minimum sum of 
mismatch

• Formulation:

• Determining expected voltage for n voltage intervals 
can be solved by transforming the problem into finding 
the median in 2n end-points of the n voltage intervals
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Voltage-Alignment Buffer Embedding (Placing)

• Compute the expected voltage for buffers of the same 
tree level

• Place each buffer of the same tree level at a position 
with the voltage closest to the expected voltage
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Experimental Setting

• Platform: 2.93 GHz Intel Xeon workstation
• Some ISPD’09 and ISPD’10 contest benchmarks
• Power networks are generated for benchmarks

⎯ 10 x 10 grids (11 horizontal and 11 vertical power trunks)
⎯ Random current value for each power node to simulate the 

real-chip situation
⎯ 5% IR-drop tolerance of the nominal supply voltage (a common 

constraint for high-end designs [Subramaniam,  Power 
management for optimal power design, EDN’10])

⎯ Nominal supply voltage: 1.0V (original setting of ISPD’10 
contest benchmark)

⎯ Available supply voltages: between 0.95V and 1.0V
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Comparison among Different Flows
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CPU
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CPU
(s)

skew
(ps)

usage
(fF)

CPU
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ispd'09-f11 121 3.02 69743 0.02 2.09 69743 0.02 1.69 72413 0.02 

ispd'09-f12 117 3.64 61462 0.02 3.53 61462 0.02 1.47 64413 0.02 

ispd'09-f21 117 9.10 78329 0.02 4.69 78329 0.02 3.15 78790 0.02 

ispd'09-f22 91 10.26 43109 0.01 4.19 43109 0.01 2.40 43905 0.01 

ispd'10-07 1915 21.26 152231 10.12 7.65 152231 10.53 5.86 154255 15.15 

ispd'10-08 1134 43.03 124132 2.02 8.45 124132 2.02 4.41 125165 2.45 

avg cmp 4.13 0.98 0.92 1.68 0.98 0.92 1.00 1.00 1.00 

Skew is efficiently improved with marginal capacitance overhead 
as the complete flow considers the voltage alignment 

Skew is efficiently improved with marginal capacitance overhead 
as the complete flow considers the voltage alignment 
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Conclusion

• We present the first work of supply-voltage-aware 
buffered clock tree synthesis 

• We minimize the clock skew by aligning used supply 
voltages for each level during clock-tree synthesis

• Experimental results shows that our proposed approach 
is both efficient and effective

• In particular, our work provides a key insight into the 
importance of handling practical design issues (such as 
IR-drop) for real-world clock-tree synthesis
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Thank You!
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