
BonnCell
Automatic Layout of Leaf Cells

Stefan Hougardy, Tim Nieberg, Jan Schneider

Research Institute for Discrete Mathematics
University of Bonn

January 24, 2013

Outline

I Introduction

I BonnCell Placement

I BonnCell Routing

I Status and Results

The Leaf Cell Layout Problem

Input: A netlist, the cell image

Goal : A “good” solution

I Place the FETs
I Choose number of fingers
I Decide to swap FETs
I Obey all placement rules
I Guarantee routability

I Routing
I Find an LVS-clean routing
I Should be almost DRC-clean
I Minimize M2 usage

Leaf Cell Layout – Overview

I Leaf cell layout is used in highly optimized arrays

I So far has been done manually

I Example: a next generation Core SRAM
I Expected time for first pass layout: 3 months or more
I Actual time needed: 1.5 months with BonnCell

I By now, BonnCell is used worldwide
I IBM Design Centers in Germany, USA, Israel, India

Main Features of BonnCell

I Generates 1-dimensional and 2-dimensional cell layouts

I Interleaving of stacks

I Instances can be non-dual, non-series-parallel, non-planar

I Unequal number of P and N devices possible
I Dynamic placement and dynamic folding

I Folding of multiple FETs
I First time done by an automatic tool

I We do not enforce and-stack-clustering

I Routing does not rely on structured placement

I DRC rules are taken into account during routing

Previous Work

Bar-Yehuda, Feldman, Pinter, Wimer (1989)

“Depth-First Search and Dynamic Programming Algorithms for
Efficient CMOS Cell Generation”

I Similar basic approach as BonnCell (also branch & bound)

I Similar target function
I Much more restricted:

I Strictly 1-dimensional
I All FETs have exactly 1 finger
I Only very structured routings are considered

I No optimum is found due to simple flipping strategy

Previous Work

Iizuka, Ikeda, Asada (2006)

“Exact Minimum-Width Multi-Row Transistor Placement for Dual
and Non-Dual CMOS Cells”

I Different approach: Transformation to CNF, applying a SAT
solver

I Similar flow: Increase cell size until feasibility is reached

I Supports 2-dimensional cells
I Much more restricted:

I Strictly 1-dimensional (i.e. no interleaving)
I All FETs have exactly 1 finger
I Routability is hardly addressed

Leaf Cell Placement

in BonnCell

Leaf Cell Placement Problem

Given an image and a netlist,
containing

I FETs and nets,

assign to each FET

I a location,

I a swap status, and

I a number of fingers,

so that the placement

I meets all placement
constraints,

I is routable, and

I is optimal.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

6

5

gd

11

12

11

gd

9

20

9

8

16

15

gd

13

31

13

gd

9

10

9

gd

9

10

12

15

13

16

21

14

22

14

gd

13

23

13

14

33

14

gd

32

34

5

9

7

3

9

4

17

6

18

8

19

8

gd

3

4

3

gd

8

11

6

5

vd

11

12

11

vd

9

27

9

8

16

15

vd

13

31

13

vd

9

10

9

vd

9

10

12

16

13

15

28

14

29

14

vd

13

30

13

14

33

14

vd

32

35

6

9

7

4

9

3

24

5

25

8

26

8

vd

3

4

3

vd

8

11

|Nd1clk

|Nd1tg

|Nd2clk

|Nd2tg

|Nl1

|Nl12

|Nl1c

|Nl1q

|Nl1t

|Nlclk

|Nltg

|Nmfdi

|Nmfdm

|Nmfdo

|Nmfdo2

|Nqb

|Nsfdi

|Nsfdo

|Nsfdo2

|Nsi

|Nsinv

|Nsinv2

|Nso

|Pd1clk

|Pd1tg

|Pd2clk

|Pd2tg

|Pl1

|Pl12

|Pl1c

|Pl1q

|Pl1t

|Plclk

|Pltg

|Pmfdi

|Pmfdm

|Pmfdo

|Pmfdo2

|Pqb

|Psfdi

|Psfdo

|Psfdo2

|Psi

|Psinv

|Psinv2

|Pso

Anatomy of a Leaf Cell

Cross Section of a FET

I A leaf cell spans 3 metal layers: PC, M1, M2

I Gates are on PC

I Source and drain are on M1

CA

M1

V1

M2

PC

CA

M1

V1

M2

CA

M1

V1

M2

RX

Cross section of a FET

Placing a FET

Placing a FET allows
many degrees of
freedom

I x-coordinate

I y-coordinate

I Number of fingers

I Swap status

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

gd

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

gd

2

3

2

gd

Which Placement Constraints?

Depending on the
FETs’ properties, they
can/must be placed in
various ways:

I With a gap

I Abutting

I Overlapping

Plus more
technology-dependent
placement constraints

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

gd

2

3

4

2

vd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

gd

2

3

3

2

vd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

gd

2

3

2

vd

What is Optimality?

Optimality in BonnCell

I Our quality measure is a quadruple (h, ggNL,wNL, σ) with:
I h := cell height in #tracks
I ggNL := sum of sizes of net’s gate intervals

I (where “gate interval” is the interval between bottommost
and topmost gate)

I wNL := weighted sum of sizes of net intervals
I (where “net interval” is the interval between bottommost and

topmost terminal)
I σ := free routing space

I (i.e. free spaces on every track summed up)

I “Optimal” placement is the placement with the
lexicographically best quality measure

I Measure proved to be good in practice

Algorithm Overview

Algorithm Overview

I Assume that FETs are placed in 2 stacks
I BonnCell Placement runs in 2 phases:

I Phase 1: Compute an optimal placement with the restriction
that both stacks can be divided by a vertical line

I Phase 2: Compute an optimal placement without the
restriction

I On a timeout, the best solution found so far is returned

1-Stack Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

|N19

|N22

|N23

|N3

1-Stack Subroutine

I Important subroutine of
the main algorithm

I Find one (or all)
track-minimal
placements of a single
stack

I Can be solved by simple
enumeration

2-Stack Flow

2-Stack Flow – Phase 1

I Assume that both stacks are divided by a vertical line

I Step 1: Choose x coordinate for this line

I Step 2: Find single track-minimal 1-stack placements for
both stacks independently

I Step 3: For all track-minimal placements of “bigger” stack
I . . . find all placements of “smaller” stack
I . . . which do not exceed the big stack’s height
I . . . and evaluate their quality
I If a placement is best so far, save it

2-Stack Flow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

gd

4

10

4

gd

4

10

3

9

3

10

3

9

3

10

3

9

5

8

5

9

5

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

8

6

8

vc

8

6

8

vc

8

6

8

vc

8

6

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

Optimal placement after phase 1.

2-Stack Flow

2-Stack Flow – Phase 2

I Do not assume the vertical line and allow interleaved
placements

I Problem: Height of optimal solution is unknown
I Solution: Start to run phase 2 with cell height 0
I Run phase 2 for increasing height as long as no solution exists

I Step 1: For all placements of “bigger” stack
I . . . find all legal placements of “smaller” stack
I . . . which do not exceed the big stack’s height
I . . . and evaluate their quality
I If a placement is best so far, save it

I In case of time-out, return best result so far (including
phase 1)

2-Stack Flow

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

vc

8

6

8

vc

8

6

8

vc

8

6

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

Optimal placement after phase 2.

Branch & Bound

Branch & Bound

I The 1-Stack subroutine can be implemented recursively
I StackPlacer(S , k) places stack S , assuming that the lower

k FETs are already placed

I A lower bound lb can be computed in every step
I lb := cur height + remaining fingers

I Stop extending the stack if lb > best height

Branch & Bound – Improvements

Improvements

I Use the number of nets accessing an odd number of
remaining FETs in the lower bound computation

I In a first step, look for a single height-optimal solution by
bounding on lb≥ best height

I Additionally, only look for solutions with a specific structure

I Ininitialize upper bound with optimal value
I More bounding possibilities in 2-Stack flow

I Netlength-based bounding of secondary stack
I Smart pruning for primary stack
I Look-ahead netlength estimation

I Some DRC rules can be implemented as additional bounding
steps

Runtime Analysis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

vc

8

6

8

vc

8

6

8

vc

8

6

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

9 FETs, 15 tracks
Estimated runtime: 3 years

BonnCell runtime: 0.8 sec.
(7,782,302 branch & bound nodes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

14

3

7

4

10

15

gd

13

12

15

14

9

13

8

18

gd

18

17

20

16

gd

gd

5

21

20

19

5

17

11

21

gd

17

19

14

3

vd

4

14

15

vd

13

12

15

14

vd

13

15

18

vd

18

17

22

16

vd

vd

5

21

22

17

5

19

6

21

vd

17

19

|Ndyn1

|Ndyn2

|Nfdi

|Nfdm

|Nfdo

|Npclk

|Nqn

|Nsclk

|Nsclk_bb

|Nsfdi

|Nsfdo

|Nsi

|Nsinv

|Nstg

|Pdyn1

|Pdyn2

|Pfdi

|Pfdm

|Pfdo

|Ppclk

|Pqn

|Psclk

|Psclk_bb

|Psfdi

|Psfdo

|Psi

|Psinv

|Pstg

28 FETs, 22 tracks
Estimated runtime: 1030 years

BonnCell runtime: 38 seconds
(83,198,650 branch & bound nodes)

Runtime Analysis

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

vc

8

6

8

vc

8

6

8

vc

8

6

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

9 FETs, 15 tracks
Estimated runtime: 3 years

BonnCell runtime: 0.8 sec.
(7,782,302 branch & bound nodes)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

14

3

7

4

10

15

gd

13

12

15

14

9

13

8

18

gd

18

17

20

16

gd

gd

5

21

20

19

5

17

11

21

gd

17

19

14

3

vd

4

14

15

vd

13

12

15

14

vd

13

15

18

vd

18

17

22

16

vd

vd

5

21

22

17

5

19

6

21

vd

17

19

|Ndyn1

|Ndyn2

|Nfdi

|Nfdm

|Nfdo

|Npclk

|Nqn

|Nsclk

|Nsclk_bb

|Nsfdi

|Nsfdo

|Nsi

|Nsinv

|Nstg

|Pdyn1

|Pdyn2

|Pfdi

|Pfdm

|Pfdo

|Ppclk

|Pqn

|Psclk

|Psclk_bb

|Psfdi

|Psfdo

|Psi

|Psinv

|Pstg

28 FETs, 22 tracks
Estimated runtime: 1030 years

BonnCell runtime: 38 seconds
(83,198,650 branch & bound nodes)

Leaf Cell Routing

in BonnCell

Leaf Cell Routing Problem

Input: Placed leaf cell with net set N = {T1, . . . ,Tn}

Output: Packing of Steiner trees for Tk , k = 1, . . . , n, subject to
various constraints (DRC, limited M2 availabilty, ...)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

8

6

8

vc

8

6

8

vc

8

6

8

vc

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

→

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

8

6

8

vc

8

6

8

vc

8

6

8

vc

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

Leaf Cell Routing Problem

Input: Placed leaf cell with net set N = {T1, . . . ,Tn}

Output: Packing of Steiner trees for Tk , k = 1, . . . , n, subject to
various constraints (DRC, limited M2 availabilty, ...)

Our approach:

I Construct half-track routing grid

I Block edges for gates, RX, ...
⇒ G = (V ,E) with Tk ⊂ V for all k

I Route by MIP-based constraint generation approach
I Identify each edge usage (per net) with variable

Packing Steiner Trees (s.t. add/l constraints)

Core MIP formulation to be solved on G = (V ,E):

min
∑

(i ,j)∈E

cijxij

s.t. xij −
n∑

k=1

xk
ij = 0 ∀(i , j) ∈ E

xij ≤ 1 ∀(i , j) ∈ E∑
(i ,j)∈E |i∈W ,j 6∈W

xk
ij ≥ 1 ∀W ⊂ V ,W ∩ Tk 6= ∅

(V \W) ∩ Tk 6= ∅,∀k

xk
ij ∈ {0, 1} ∀(i , j) ∈ E , ∀k

I Note: third set of constraints (Steiner Cut Inequalities) has
exponential cardinality

I Gives edge-disjoint Steiner tree packing [Grötschel et al. 97]

Packing Steiner Trees (s.t. add/l constraints)

Add constraints to ensure connectivity of net

I e.g. flow-based LP formulation for single Steiner tree
k ∈ {1, . . . , n}, r ∈ Tk [Goemans et al. 93]

Sxk f := {(xk , f) | f t(δ+(i))− f t(δ−(i)) = rhsi , i ∈ V , t ∈ Tk}

f t
ij ≤ xk

ij ∀{i , j} ∈ E , ∀t ∈ Tk

f t
e ≥ 0 ∀e ∈ A,∀t ∈ Tk

rhsi :=

1 i = r
−1 i = t

0 i ∈ V \ {t, r}

Design Rules

Extend core MIP so that solution satisfies additional constraints

I Distance rules between different nets (minspace, interlayer via,...)

I Samenet rules (samenet minspace, minarea...)

I ...

Overall, there are 80+ constraints induced per (edge, net) pair

Design Rules – Example

Line-End ⇐⇒ Polygonal edge between two convex corners closer
than tLE ∈ N
Line-End requires additional spacing for OPC

xw xe

xs

xn

x i
e′

In this example, xw − (xn + xe + xs) + x i
e′ ≤ 1 forces x i

e′ to zero.

Constraint Generation

Solution Approach

I Due to high number of constraints (of which many are
nonbinding), we use constraint generation:

• Start with a limited but useful subset of constraints
• Solve MIP
• Check all constraints for feasibility

I All feasible: Optimal solution found
I Not all feasible: Add (some) violated constraints to MIP and

resolve

I Efficient constraint checking:
I Net connectivity ⇒ New cuts or flow formulation
I DRC violations ⇒ Wire-dependent constraints

Add/l Benefit: MIP infeasible ⇒ Placement unroutable!

Example BonnCell Routing

cab_ccache_aoi_lclk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

5

4

8

8

3

5

3

8

6

gd

6

8

vd

4

7

7

3

5

5

6

vd

|T0

|T3

|T4

|T5

|T6

|T7

BonnCell result (basic routing flow)
Running time: 324 seconds

Additional Features

Many features beyond basic functionality

I Spend additional tracks to improve routability

I Place within fixed cell height

I Multi-dimensional placement & routing

I Folding multiple FETs

I GUI integration into Cadence environment

I Pin placement w/o routing

I User-defined constraints like fixations and
maximum/minimum widths

I Several modes for external pins

I Powerful Postprocessing heuristics

Results & Outlook

Designer vs. BonnCell

Designer placement: 22 tracks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

10

4

gd

4

10

3

9

3

10

3

9

5

8

5

9

5

8

gd

8

6

8

gd

8

6

8

gd

10

4

vd

vc

6

7

6

8

5

vc

5

8

5

vc

8

6

8

vc

8

6

8

vc

8

6

8

vc

|N19

|N22

|N23

|N3

|P28

|P33

|P5

|P7

|T1

BonnCell
placement: 15 tracks
Routing runtime: 14:33

Results on 22 nm testbed

Cell Placement Routing
|F| |N | |T | h time time

1 9 12 57 15 0:04 2:55
2 7 10 32 10 0:01 0:12
3 6 9 41 10 0:01 0:13
4 12 13 57 14 0:43 27:45
5 6 10 25 7 0:01 0:08
6 14 16 39 10 0:01 0:33
7 4 9 47 11 0:01 3:26
8 5 9 34 13 0:01 0:23
9 15 23 47 14 0:01 1:49
10 8 12 46 11 0:01 38:27
11 2 6 32 8 0:00 2:10
12 2 6 56 14 0:01 5:08
13 16 16 51 14 0:01 14:33
14 5 8 16 4 0:00 2:24

|N | number of nets, |T | number of terminals (active gates,
contacts, and external pins), h height in tracks, time is [mm:ss]

Additional BonnCell Applications

I Cell Tuning
I resizing transistors

I timing optimization

I optimize pin positions

I create different versions of same cell

I Postoptimization of Cell Libraries

I Library Design

I Evaluation of early Design Decisions:

I how many tracks should be used?

I how much M2 will be needed?

BonnCell 22nm Results on Library
cell type # in library % area reduction # used∗ % area reduction

aoi21 156 7.69 56 0.79

aoi22 80 5.99 55 6.15

buff 96 2.89 0 —

invert 92 0.00 66 0.00

latch 48 2.12 17 1.72

nand2 176 12.88 58 5.28

nand3 132 15.26 50 8.97

nand4 56 7.49 39 7.73

nor2 160 10.17 52 1.77

nor3 116 15.65 44 10.12

oai21 148 6.24 53 0.62

oai22 80 6.32 54 6.98

xnor2 80 12.36 54 12.03

xor2 80 11.20 57 10.78

other 9 5.14 2 4.13
all 1509 8.91 657 6.05

∗ = used on a testbed of current chips.

Future Work

14 nm version

I 14 nm placement (done)
I 14 nm routing (WIP)

I Mix of MIP-based and combinatorial approach

I Many technology changes and new design rule types

Thank you!

